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PoLyNOMIAL PROGRAMS

(xy)i=(x=y,y)

£ non-initial locations, d variables
Goal: understand the reachable sets in Q9
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PoLyNoMIAL LOOPS

2
xp =X+ yi,y2 i=x1 —y1, x1 :=0,y1:=0

(x1,y1, %2, ¥2, %3, ¥3) := (1,2,0,0,0,0)
—{ @ a1

After reduction: ¢ - d variables &  same type of updates
Non-determinism, or “multi-path” loops

Focus on the set S C Q¥ of vectors reachable in g;
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ALGEBRAIC INVARIANTS

AN ALGEBRAIC SET

is a subset V C @d defined by polynomial equalities.

(x,y,2) := (2x,4y,82)

(X7.y7 Z) = (17 17 1)
—{ Qo q

(X,yvz) = (_X7y7 _Z)

An algebraic set can overapproximate the reachable set S,
e.g., SC V(x?—y). Then we call V an algebraic invariant of the loop.
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STRONGEST ALGEBRAIC INVARIANT

Zariski closure S is the smallest algebraic set containing S.

smallest algebraic set <+ strongest algebraic invariant

(x,y,z) := (2x,4y,82)

C (x,y,2z):=(1,1,1)
qo a1

(vavz) = (_vaa —Z)
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STRONGEST ALGEBRAIC INVARIANT

Zariski closure S is the smallest algebraic set containing S. J

smallest algebraic set <+ strongest algebraic invariant

(x,y,2) = (2x,4y, 82)

(X’ .y7 z) ': (17 1’ 1)
—{ qo a1

(vavz) = (_vaa —Z)

always a zero set of a finite collection of polynomials — finitary object

S=V(x®-y,x3-2)
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BEYOND LINEAR LOOPS

THEOREM [KovAcs, V.] RAMICS’23

The strongest algebraic invariant of a multi-path loop with polynomial
updates of degree < 2 is algorithmically uncomputable.

Reduction from the Boundedness Problem for Reset VASS.

THEOREM [MULLNER, MOOSBRUGGER, KOVACS] POPL’24

Computing the strongest algebraic invariant of a single-path polynomial
loop is at least as hard as Skolem problem.

Open problem 1: Is it uncomputable?
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LINEAR LOOPS

THM. [HRUSHOVSKI, OUAKNINE, POULY, WORRELL] LICS’18

The strongest algebraic invariant of a multi-path linear loop can be
computed.

But what ARE the polynomials?
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LINEAR LOOPS

THM. [HRUSHOVSKI, OUAKNINE, POULY, WORRELL] LICS’18

The strongest algebraic invariant of a multi-path linear loop can be
computed.

THM. [AIT EL MANSSOUR, KENISON, SHIRMOHAMMADI, V.]

POPL’25

The strongest algebraic invariant of a single-path linear loop can be
computed in polynomial time.

x:=secQ?
while x do
x:=M-x

But what ARE the polynomials?
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LINEAR LOOPS

THM. [HRUSHOVSKI, OUAKNINE, POULY, WORRELL] LICS’18

The strongest algebraic invariant of a multi-path linear loop can be
computed.

THM. [AIT EL MANSSOUR, KENISON, SHIRMOHAMMADI, V.]

POPL’25

The strongest algebraic invariant of a single-path linear loop can be
computed in polynomial time.

- d . .
x:=s€Q Based on a polynomial-time procedure to
while « do compute multiplicative relations of M's
x:=M:-x eigenvalues.

But what ARE the polynomials?

Anton Varonka (TU Wien) Rational Loop Synthesis 7th July 2025 7



LOOP INVARIANTS: REVERSE ENGINEERING

invariant generation )
Loop Invariant

(x.y) =(0,0) v

while y < N do holds before and
x:=x+2y+1 after each iteration
y=y+1
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LOOP INVARIANTS: REVERSE ENGINEERING

invariant generation )
Loop Invariant

(x,y):=(0,0) i

while y < N do holds before and
x:=x+2y+1 after each iteration
y=y+1

(0,0), (1.1), (42),
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LOOP INVARIANTS: REVERSE ENGINEERING

invariant generation )
Loop Invariant

(x,y) = (0,0) y=x

while y < N do holds before and
x:=x+2y+1 after each iteration
y=y+1

(0,0), (1.1), (42),
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LOOP INVARIANTS: REVERSE ENGINEERING

Loop - Invariant
loop synthesis

y=x*
holds before and
after each iteration

For a polynomial invariant p = 0, synthesise a correct linear loop. J
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LOOP INVARIANTS: REVERSE ENGINEERING

Loop - Invariant
loop synthesis

y=x*
holds before and
after each iteration

For a polynomial invariant p = 0, synthesise a correct linear loop. J

Decide whether such a loop exists.
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LOOP SYNTHESIS PROBLEM

Given: a finite set of polynomials S
defining an algebraic set V(S) € Q7
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LOOP SYNTHESIS PROBLEM

Given: a finite set of polynomials S
defining an algebraic set V(S) € Q7

Is there a loop?
decide whether there exist:

X :=Ss;
. dxd while x do
e an update matrix M € Q9*¢, x1 X1
e initial vector s € QY, : =M- :
Xd Xd
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LOOP SYNTHESIS PROBLEM

Given: a finite set of polynomials S
defining an algebraic set V(S) € Q7

Is there a loop?

decide whether there exist: X : S:
. dxd while x do
@ an update matrix M € Q9*9, x1 X1
e initial vector s € QY, : =M-| :
such that Xd Xd

O ={s,Ms,M?s,...} C V(S) [weak]
or with (strongest)
algebraic invariant V/(S)

O = {s,Ms,M?s,...} = V(S) [strong]
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LOOP SYNTHESIS PROBLEM

Given: a finite set of polynomials S
defining an algebraic set V(S) € Q7

Is there a loop?
decide whether there exist: X =8

e an update matrix M € Q%9 while { do

o initial vector s € Q¢
such that

O ={s,Ms,M?s,...} C V(S) [weak]
or

O = {s,Ms,M?s,...} = V(S) [strong]

with (strongest)
algebraic invariant V/(S)

1 We always search for an infinite orbit O.
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LOOP SYNTHESIS: (ALGEBRA-)GEOMETRICALLY

y

/ sample rational points from a variety

X

=

‘—x4—2x3y—x2y2+2xy3+y4—1:0
\

1= We always sample infinitely many points.
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LOOP SYNTHESIS: (ALGEBRA-)GEOMETRICALLY

y
/ sample rational points from a variety
) X (Xay)<_(1a0);
( while x do
/ X X+Yy;
Y X

‘—x472x3y7x2y2+2xy3+y471:0
\

x\ (1

y) \0)’

= We always sample infinitely many points.
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LOOP SYNTHESIS: (ALGEBRA-)GEOMETRICALLY

/ sample rational points from a variety

whlle * do
/

‘—x472xyfxy +2xy3 4yt —1=0
x\ (1 1
y) \0o) \1)’

= We always sample infinitely many points.

X X+Yy;
y < X,
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LOOP SYNTHESIS: (ALGEBRA-)GEOMETRICALLY

y
/ sample rational points from a variety
) X (Xay)<_(1a0);
( while x do
/ X X+Yy;
Y X

‘—x472x3y7x2y2+2xy3+y471:0‘
\
x\ (1) (1) (2
y - O ’ 1 ’ 1 ’

= We always sample infinitely many points.
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LOOP SYNTHESIS: (ALGEBRA-)GEOMETRICALLY

y
/ sample rational points from a variety
) X (Xay)<_(1a0);
( while x do
/ X X+Yy;
Y X

‘—x472x3y7x2y2+2xy3+y471:0‘
\
X\ (1\ [1\ [2\ (3
y - O ’ 1 ’ 1 ’ 2 ’

= We always sample infinitely many points.
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LOOP SYNTHESIS: (ALGEBRA-)GEOMETRICALLY

y
sample rational points from a variety
) x  (xy)«(1,0);
( while *x do
/ X X+Yy;
y — X;

‘—x472x3y7x2y2+2xy3+y471:0‘
\
X\ (1\ [1\ [2\ (3\ (5
y) \o)’\1)>\1)°\2)"\3)"""

= We always sample infinitely many points.
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LOOP SYNTHESIS IS HARD

THM. [AIT EL MANSSOUR, KENISON, SHIRMOHAMMADI, V.]

POPL’25

The weak synthesis problem over {Z,Q} is as hard as Hilbert's 10th
problem over {Z,Q}.

H10 over R € {Z,Q}: solve a system of polynomial equations over R.
@ undecidable for R = Z,

o decidability open for R = Q.

we encode an H10-instance {p1, ..., px} as finding a loop with algebraic
invariant V/(p1,..., Pk, P)
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PURE DIFFERENCE BINOMIALS

Does an equation p(xi,...,Xxg) = 0 have infinitely many solutions in Q? J
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PURE DIFFERENCE BINOMIALS

Does an equation p(xi,...,Xxg) = 0 have infinitely many solutions in Q? J

— Yes, if p is a pure difference binomial (PDB).
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PURE DIFFERENCE BINOMIALS

Does an equation p(xi,...,Xxg) = 0 have infinitely many solutions in Q? J

— Yes, if p is a pure difference binomial (PDB).

A pure difference binomial is a polynomial p € Q[xq, ..., xy4] of the form

p:xf‘l...xgd—xlﬂl...xgd,

where o, 5; € Nforall i =1,...,d.

Examples in Q[x, y, z]: 1 — xyz, xz — y3, x?y — 23, etc.
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A Loopr FOrR PDBs

Looprp SYNTHESIS FOR PDB IDEALS

Input: pure difference binomials py, ..., pk.
Output: A linear loop for which every p € | = (p1,..., px) is invariant.
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A Loopr FOrR PDBs

Looprp SYNTHESIS FOR PDB IDEALS

Input: pure difference binomials ps, ..., pk.
Output: A linear loop for which every p € I = (p1, .

.., Pk) is invariant.

THEOREM [KENISON, KovAcs, V.]

Let p1,p2,...,pk € Q[x1,...,x4] be PDBs; let | = (p1, .

o There exists a linear loop £ = (M, s) € Q%9 x Q¢
s.t. V(/) is its algebraic invariant.

@ An effective procedure constructs L.
o If k < d, then £ has an infinite orbit.

ISSAC’23
e PR)-

Q

Anton Varonka (TU Wien) Rational Loop Synthesis

7th July 2025
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LLOOPS FOR SYSTEMS OF PDBs

We show how to combine multiple pure difference binomials.
x>~y =0Ax3—z=0 — a linear loop with 3 variables.
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LLOOPS FOR SYSTEMS OF PDBs

We show how to combine multiple pure difference binomials.
x>~y =0Ax3—z=0 — a linear loop with 3 variables.

(X,y7Z) = (17 1, 1),

while « do
X 2 00 X
yl =10 4 0 yl;
z 0O 0 8 z
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LLOOPS FOR SYSTEMS OF PDBs

We show how to combine multiple pure difference binomials.
x>~y =0Ax3—z=0 — a linear loop with 3 variables.

(X,y7Z) = (17 1, 1),
while x do (x(n))oe.

n=0 -

2 00 o

"\ X (y(m)o
yl =10 4 0 yl; ~
z 0 0 8 z (z(n))no

1,2,4, ...
1,4,16,. ..
1,8,64,...

For n-th terms, it holds: x(n)? — y(n) =0 A x3(n) — z(n) = 0.

Anton Varonka (TU Wien) Rational Loop Synthesis

7th July 2025
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MULTIPLICATIVE RELATIONS

Assume we search for a diagonal matrix M = diag(A1, ..., \g).
(X,y,Z) = (X07y0720); i 2_ l _( n)2_>\n_
while x do X0 w) P 2=
X 2 0 0\ [x L
vyl =10 4 o vl (2M* —(4") = 0 for all n.
z 0 0 8 z
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MULTIPLICATIVE RELATIONS

Assume we search for a diagonal matrix M = diag(A1, ..., \g).
(X,y,Z) = (X07y0720); X 2_ y _( n)2_>\n_
while x do X0 w) P 2=
X 2 0 0\ [x L
vyl =10 4 o vl (2M* —(4") = 0 for all n.
z 0 0 8 z

A MULTIPLICATIVE RELATION

of A1,..., g € Qis a tuple (vq,...,vy) € Z9 sit.

AL A =1,
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MULTIPLICATIVE RELATIONS

Assume we search for a diagonal matrix M = diag(A1, ..., \g).
(X,y,Z) = (X07y0720); X 2_ y _( n)2_)\n_
while x do Xo vo) 1 27
X 2 00 X o .
vyl =10 4 o vl (2M* —(4") = 0 for all n.
z 0 0 8 z

A MULTIPLICATIVE RELATION

of A1,..., g € Qis a tuple (vq,...,vy) € Z9 sit.
V1 Vd __
Al A =1
polynomials vanishing on (Af,...,A]) for all n
are generated by PDBs of multiplicative relations of A1,..., Ay
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MULTIPLICATIVE RELATIONS

Assume we search for a diagonal matrix M = diag(A1, ..., \g).
(X,y,Z) = (X07y0720); X 2_ y _( n)2_)\n_
while x do Xo vo) 1 27
X 2 00 X "o 1
vyl =10 4 o vl (2")*—(4")" = 0 for all n.
z 0 0 8 z

(2,—1) is a mult. rel.

A MULTIPLICATIVE RELATION

of A1,..., g € Qis a tuple (vq,...,vy) € Z9 sit.
V1 Vd __
Al A =1
polynomials vanishing on (Af,...,A]) for all n
are generated by PDBs of multiplicative relations of A1,..., Ay
Anton Varonka (TU Wien) Rational Loop Synthesis 7th July 2025 15



QUADRATIC INVARIANTS

Avoiding hardness of Hilbert's 10: bound the degree of polynomials.
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QUADRATIC INVARIANTS

Avoiding hardness of Hilbert's 10: bound the degree of polynomials.

THM. [GRUNEWALD & SEGAL]

There is an algorithm to decide whether a quadratic equation in arbitrary
number of variables has a rational solution.

%-X2—7-xy—|—%-Xz—22—|—31-y+z—7:0
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QUADRATIC INVARIANTS

Avoiding hardness of Hilbert's 10: bound the degree of polynomials.

THM. [GRUNEWALD & SEGAL]

There is an algorithm to decide whether a quadratic equation in arbitrary
number of variables has a rational solution.

%-X2—7-xy—|—%-Xz—22—|—31-y+z—7:0

But: we still need to find a matrix M.

Anton Varonka (TU Wien) Rational Loop Synthesis 7th July 2025 16



Consider an equation Q(x) = c,

(x,y,z) :=(3,4,5);

while x do
X 1= 2x;
y =2y,
zZ:=2z;

Anton Varonka (TU Wien)

Q is a quadratic form (homogeneous).

X2 4y?—22=0

(x,y,z) :=(3,4,5);
while x do
X 1=x—2y+ 2z
y i =2x—y+2z
z:=2x — 2y + 3z;

Rational Loop Synthesis 7th July 2025
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Consider an equation Q(x) = c,

(x,y,z) :=(3,4,5);

while x do
X 1= 2x;
y =2y,
zZ:=2z;

Anton Varonka (TU Wien)

Q is a quadratic form (homogeneous).

x> +y?— 22 =61

(x,y,z) :=(3,4,5);
while x do
X 1=x—2y+ 2z
y i =2x—y+2z
z:=2x — 2y + 3z;

Rational Loop Synthesis 7th July 2025

17



Consider an equation Q(x) = c,

(vavz) = (17171);

while x do
X 1= 2x;
y =2y,
zZ:=2z;

Anton Varonka (TU Wien)

Q is a quadratic form (homogeneous).

x> +y?— 22 =61

(x,y,z) :=(1,1,1);
while x do
X 1=x—2y+ 2z
y i =2x—y+2z
z:=2x — 2y + 3z;

Rational Loop Synthesis 7th July 2025

17



Consider an equation Q(x) = c,
Q is a quadratic form (homogeneous).

X2py?—2=1

(x,y,z) :=(1,1,1);
while x do
X 1=x—2y+ 2z
y i =2x—y+2z
z:=2x — 2y + 3z;

(1,1,1) = (1,3,3) — (1,5,5) —
. a non-trivial loop!
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Consider an equation Q(x) = c,
Q is a quadratic form (homogeneous).

%2 +y2 _ 21
while x do
X 1=x—2y+ 2z

y i =2x—y+2z
z:=2x — 2y + 3z;

(1,1,1) = (1,3,3) — (1,5,5) —
. a non-trivial loop!

How did we find this M?

Anton Varonka (TU Wien) Rational Loop Synthesis 7th July 2025 17



PELL’S EQUATION

Intuition: x2 — 7y? = 1 has a fundamental solution (8, 3).
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PELL’S EQUATION

Intuition: x2 — 7y? = 1 has a fundamental solution (8, 3).

Aloop for Q=1:

while x do
x:=8x+3-7y;
y = 3x + 8y;
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PELL’S EQUATION

Intuition: x2 — 7y? = 1 has a fundamental solution (8, 3).

Aloop for Q=1:

(x,y) = (8,3);
while x do
x = 8x + 2ly;
y :=3x+ 8y;

Anton Varonka (TU Wien) Rational Loop Synthesis 7th July 2025 18



PELL’S EQUATION

Intuition: x2 — 7y? = 1 has a fundamental solution (8, 3).

Aloop for Q=1:

(x,y) = (8,3);
while x do
x = 8x + 2ly;
y :=3x+ 8y;

Anton Varonka (TU Wien)

A loop for @ =2

(x,y) = (3,1);
while x do
x 1= 8x + 21y;
y = 3x + 8y;

Rational Loop Synthesis

A loop for Q = —12:

(x,y) = (4,2);
while x do
x := 8x + 2ly;
y :=3x+ 8y;

7th July 2025
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THEOREM [KENISON, KovAcs, SINGH, V] STACS 24

There exists a procedure that, given an equation Q(xi,...,xq) =,
where @ is a quadratic form, decides whether a non-trivial linear loop
satisfying it exists and, if so, synthesises a loop.
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ARBITRARY QUADRATIC EQUATIONS

Q is a quadratic form, L is a linear form of x = (x1,...,Xq).

THEOREM [KENISON, KovAcs, SINGH, V] STACS’24

There exists a procedure that, given an equation Q(x)+ L(x) =c,
decides whether a non-trivial affine loop satisfying it exists and, if so,

synthesises a loop.
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ARBITRARY QUADRATIC EQUATIONS

Q is a quadratic form, L is a linear form of x = (x1,...,Xq).

THEOREM [KENISON, KovAcs, SINGH, V] STACS’24

There exists a procedure that, given an equation Q(x)+ L(x) =c,
decides whether a non-trivial affine loop satisfying it exists and, if so,

synthesises a loop.

5 5 (Xa.y) = (2’_1)
x“+y —3x—-y=0 while x do
x\  (3/5x—4/5y+1
y 4/5x +3/5y —1
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ARBITRARY QUADRATIC EQUATIONS

Q is a quadratic form, L is a linear form of x = (x1,...,Xq).

THEOREM [KENISON, KOovAcs, SINGH, V.] STACS’24

There exists a procedure that, given an equation Q(x)+ L(x) =c,
decides whether a non-trivial affine loop satisfying it exists and, if so,
synthesises a loop.

5 5 (X,_)/) = (2’_1)
x“+y =3x—-y=0 while x do

()= (o )

NB: affine loops in d variables are linear loops in d + 1 variables:

x 3/5 —4/5 1 x
y|l =14/5 3/5 -1|-|y
z 0 0 1 z

Anton Varonka (TU Wien) Rational Loop Synthesis 7th July 2025 20



INVARIANTS WITHOUT LOOPS

Some polynomials need an additional variable.

There exists no (non-trivial) linear
loop with 2 variables s.t.

x> +y?—-3x—y=0.
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INVARIANTS WITHOUT LOOPS

Some polynomials need an additional variable.

There exists no (non-trivial) linear
loop with 2 variables s.t.

x> +y?—-3x—y=0.

(alternative loop synthesis question:) given | C Q[xq, ..., x4],
does there exist a loop (M, s) € Q¥*k x Q¥ for some k > d
st. O C V(I)? Here V(1) C Q.

Open problem 2: is there an upper bound on k?

Anton Varonka (TU Wien) Rational Loop Synthesis

7th July 2025
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BIT-BOUNDED VERSION

Loop synthesis problem: is there a loop with algebraic invariant V/(S)?
with additional input: integer B.
Search for (M, s) with entries of bitsize < B, call them bit-bounded loops.
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BIT-BOUNDED VERSION

Loop synthesis problem: is there a loop with algebraic invariant V/(S)?

with additional input: integer B.
Search for (M, s) with entries of bitsize < B, call them bit-bounded loops.

THM. [AIT EL MANSSOUR, KENISON, SHIRMOHAMMADI, V.|

POPL’25
1= The strong and weak synthesis problems for bit-bounded loops can be
solved with polynomial space.

1= Both versions are NP-hard under appropriate reductions.
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BIT-BOUNDED VERSION

Loop synthesis problem: is there a loop with algebraic invariant V/(S)?

with additional input: integer B.
Search for (M, s) with entries of bitsize < B, call them bit-bounded loops.

THM. [AIT EL MANSSOUR, KENISON, SHIRMOHAMMADI, V.|

POPL’25

1= The strong and weak synthesis problems for bit-bounded loops can be
solved with polynomial space.

1= Both versions are NP-hard under appropriate reductions.

e guess M and s while respecting the bound (NP)
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BIT-BOUNDED VERSION

Loop synthesis problem: is there a loop with algebraic invariant V/(S)?

with additional input: integer B.
Search for (M, s) with entries of bitsize < B, call them bit-bounded loops.

THM. [AIT EL MANSSOUR, KENISON, SHIRMOHAMMADI, V.|

POPL’25

1= The strong and weak synthesis problems for bit-bounded loops can be
solved with polynomial space.

1= Both versions are NP-hard under appropriate reductions.

e guess M and s while respecting the bound (NP)
e use invariant generation routine for (M, s) (PSPACE, or P)
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BIT-BOUNDED VERSION

Loop synthesis problem: is there a loop with algebraic invariant V/(S)?
with additional input: integer B.
Search for (M, s) with entries of bitsize < B, call them bit-bounded loops.

THM. [AIT EL MANSSOUR, KENISON, SHIRMOHAMMADI, V.|

POPL’25

1= The strong and weak synthesis problems for bit-bounded loops can be
solved with polynomial space.

1= Both versions are NP-hard under appropriate reductions.

e guess M and s while respecting the bound (NP)
e use invariant generation routine for (M, s) (PSPACE, or P)
e radical membership test to verify if O C V(S) (AM)

Anton Varonka (TU Wien) Rational Loop Synthesis 7th July 2025
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MORE ON BIT-BOUNDED

NP-hardness of the weak synthesis: reduce from 3SAT.
®=C A A Cyp with m clauses and d variables y1, ..., yq.

e add x;(1 — x;) for each y; to the polynomial collection S

o for each clause, say C; = y1 V —y» V yq4, add a polynomial p;, here
(1 —x1)x2(1 — xq).

A non-trivial loop M = diag(1,...,1,2,2) and a = (osq, ..., g, 1,1)
has invariant V(S) < 3(aq,...,aq), a sat. assignment

Open problem 3: Exact complexity of bit-bounded synthesis?
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OPEN PROBLEMS

© Is the strongest algebraic invariant of a single-path polynomial loop
uncomputable?

@ Is there an upper bound on the minimal number of variables in a loop
that has a given algebraic invariant?

© What is the exact complexity of the bit-bounded synthesis problem?
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THANK YOU ! QUESTIONS 7

Loop : Invariant(s)
loop synthesis

Procedures to synthesise simple (single-path) linear loops for

@ invariant ideals generated by pure difference binomials — linear loops
@ invariants defined by quadratic form equations — linear loops

@ arbitrary quadratic equations — affine loops
@ bit-bounded synthesis in PH and NP-hard
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WHAT ELSE 1S UNSOLVABLE?

PROPOSITION

Finding the strongest algebraic invariant of a multi-path affine loop with
guarded affine updates is algorithmically unsolvable.

x=y—=xy)=Kx-yy)

@ (x,y) == (x0, Y0) @ x=0=(x,y) = (x+1,2x)

x=0=(x,y) = (x+y,2y)
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MULTIPLE QUADRATIC EQUATIONS

@ Loop synthesis for a system of quadratic equations: not within reach.
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MULTIPLE QUADRATIC EQUATIONS

@ Loop synthesis for a system of quadratic equations: not within reach.

@ A polynomial equation of any degree can be written as a system of
linear and quadratic equations.
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MULTIPLE QUADRATIC EQUATIONS

@ Loop synthesis for a system of quadratic equations: not within reach.

@ A polynomial equation of any degree can be written as a system of
linear and quadratic equations.

o Perfect Euler brick: a cuboid with edges and all four diagonals of
integer length.

32 + b2 = da2b dab b
b2 + c? = dgc dbc ><dabc—
c?+a’=d ~d

a®+ b+ c? =d2,

ac

a

Existence of a perfect Euler brick is open.
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FAVOURITE SEQUENCE EXAMPLE

x* =23y —x2y? 4 2xy3 +y* —1=0

is a loop invariant
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FAVOURITE SEQUENCE EXAMPLE

x* =23y —x2y? 4 2xy3 +y* —1=0

is a loop invariant, or p(x,y) = (x> —xy —y? —1)- (x> —xy —y?>+1) = 0.
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FAVOURITE SEQUENCE EXAMPLE

Xt =23y —x2y? 4+ 2xy3 +yf —1=0

is a loop invariant, or p(x,y) = (x> —xy —y? —1)- (x> = xy —y?>+1) = 0.
Find a loop for x> —xy —y?>—1=0.
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FAVOURITE SEQUENCE EXAMPLE

Find a loop for x> —xy —y>—1=0.
o (already of the form Q = ¢)

e to diagonalise, get rid of xy : =x2-2y2=1

4
e a loop <g 190> <é) for x? — 2y =1
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FAVOURITE SEQUENCE EXAMPLE

Xt =23y —x2y? 4+ 2xy3 +yf —1=0

is a loop invariant, or p(x,y) = (x> —xy —y? —1)- (x> = xy —y?>+1) = 0.
Find a loop for x> —xy —y>—1=0.
o (already of the form Q = ¢)

e to diagonalise, get rid of xy : =x2-2y2=1

4
e a loop <g 19()) <é) for x? — 2y =1

Result: a loop (183 §> (3)
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is a loop invariant, or p(x,y) = (x> —xy —y? —1)- (x> = xy —y?>+1) = 0.
Find a loop for x> —xy —y>—1=0.
o (already of the form Q = ¢)

e to diagonalise, get rid of xy : = x? — %yz =1
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Result: a loop (183 §> (3)
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FAVOURITE SEQUENCE EXAMPLE

Xt =23y —x2y? 4+ 2xy3 +yf —1=0

is a loop invariant, or p(x,y) = (x> —xy —y? —1)- (x> = xy —y?>+1) = 0.
Find a loop for x> —xy —y>—1=0.

o (already of the form Q = ¢)

e to diagonalise, get rid of xy : = x? — %yz =1

9 10\" /1 2 5.0
oaloop<8 9) <0>forx 2y =1
13 8\" /1
Result.aloop(8 5> (0>
x\ (1 13
y) \0)’\8)’
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FAVOURITE SEQUENCE EXAMPLE

Xt =23y —x2y? 4+ 2xy3 +yf —1=0

is a loop invariant, or p(x,y) = (x> —xy —y? —1)- (x> = xy —y?>+1) = 0.
Find a loop for x> —xy —y>—1=0.

o (already of the form Q = ¢)

e to diagonalise, get rid of xy : = x? — %yz =1

e a loop <g 19()) <é) for x? — 2y =1
13 8\" (1
Result: a loop (8 5> (0>
X\ (1) [13) (233
y) \0J"\8) \144)"
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FAVOURITE SEQUENCE EXAMPLE

Xt =23y —x2y? 4+ 2xy3 +yf —1=0

is a loop invariant, or p(x,y) = (x> —xy —y? —1)- (x> = xy —y?>+1) = 0.
Find a loop for x> —xy —y>—1=0.

o (already of the form Q = ¢)

e to diagonalise, get rid of xy : = x? — %yz =1

9 10\" /1 2 5.0
@ aloop <8 9) <0) for x 2y =1
13 8\" /1
Result.aloop(8 5> (0>
x\ (1 13 233 Fén+1
y) \0J'\8) \144)" "\ F, )
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