Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook 0

Polynomial Ideals and Order Ideals

Sylvain Schmitz

based on joint work with Lia Schütze

Loop Invariants and Algebraic Reasoning, July 7, 2025

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook 0

Outline

Hilbert's Basis Theorem

involved e.g., in computing Zariski closures

order ideals

- over well-quasi-orders
- allows to derive complexity statements

connection

- illustration on polynomial automata
- invertible polynomial automata and the dimension of ideals
- what about Buchberger's algorithm?

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook o

Outline

Hilbert's Basis Theorem

involved e.g., in computing Zariski closures

order ideals

- over well-quasi-orders
- allows to derive complexity statements

connection

- illustration on polynomial automata
- invertible polynomial automata and the dimension of ideals
- what about Buchberger's algorithm?

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook 0

Outline

Hilbert's Basis Theorem

involved e.g., in computing Zariski closures

order ideals

- over well-quasi-orders
- allows to derive complexity statements

connection

- illustration on polynomial automata
- invertible polynomial automata and the dimension of ideals
- what about Buchberger's algorithm?

Order Ideal: 00000 Connections 0000 Invertible Polynomial Automata

Outlook o

Motivating Example

A loop with polynomial updates

```
x := 1/3;
y := -5;
while (*) {
    choose
      (x,y) := (2y,y*x);
      or
      (x,y) := (1, 3x);
}
return (x-1)*(y+1);
```

Order Ideal 00000 Connections 0000 Invertible Polynomial Automata

Outlook o

Motivating Example

A loop with polynomial updates

x := 1/3; y := -5; while (*) { choose (x,y) := (2y,y*x); or (x,y) := (1, 3x); } return (x-1)*(y+1); ... seen as a polynomial automaton

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook 0

- A polynomial automaton $\ensuremath{\mathcal{A}}$ of dimension d
- finite alphabet Σ
- initial configuration $\alpha \in \mathbb{Q}^d$
- ▶ polynomial updates $(p_{a})_{a \in \Sigma} \colon \mathbb{Q}^{d} \to \mathbb{Q}^{d}$
- polynomial output $\gamma: \mathbb{Q}^d \to \mathbb{Q}$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook 0

- A polynomial automaton $\ensuremath{\mathcal{A}}$ of dimension d
- finite alphabet Σ
- initial configuration $\alpha \in \mathbb{Q}^d$
- ▶ polynomial updates $(p_{a})_{a \in \Sigma} \colon \mathbb{Q}^{d} \to \mathbb{Q}^{d}$
- polynomial output $\gamma: \mathbb{Q}^d \to \mathbb{Q}$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook 0

- A polynomial automaton $\ensuremath{\mathcal{A}}$ of dimension d
- finite alphabet Σ
- initial configuration $\alpha \in \mathbb{Q}^d$
- ► polynomial updates $(p_a)_{a \in \Sigma} \colon \mathbb{Q}^d \to \mathbb{Q}^d$
- polynomial output $\gamma: \mathbb{Q}^d \to \mathbb{Q}$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook 0

- A polynomial automaton $\ensuremath{\mathcal{A}}$ of dimension d
- finite alphabet Σ
- initial configuration $\alpha \in \mathbb{Q}^d$
- ► polynomial updates $(p_a)_{a \in \Sigma} \colon \mathbb{Q}^d \to \mathbb{Q}^d$
- polynomial output $\gamma \colon \mathbb{Q}^d \to \mathbb{Q}$

Order Ideals Doooo Connections 0000 Invertible Polynomial Automata

Outlook 0

Zeroness of Polynomial Automata

Semantics

• $p_w \colon \mathbb{Q}^d \to \mathbb{Q}^d$ for $w \in \Sigma^*$

 $p_{\epsilon} \stackrel{\text{\tiny def}}{=} identity \qquad \qquad p_{aw} \stackrel{\text{\tiny def}}{=} p_{w} \circ p_{a}$

 $\blacktriangleright \ \llbracket \mathcal{A} \rrbracket(w) \stackrel{\text{\tiny def}}{=} \gamma(p_w(\alpha))$

ZERONESS input polynomial automaton \mathcal{A} question does $\llbracket \mathcal{A} \rrbracket(w) = 0$ for all $w \in \Sigma$

Order Ideals Doooo Connections 0000 Invertible Polynomial Automata

Outlook 0

Zeroness of Polynomial Automata

Semantics

 $\blacktriangleright \ p_w \colon \mathbb{Q}^d \to \mathbb{Q}^d \text{ for } w \in \Sigma^*$

 $p_{\epsilon} \stackrel{\text{\tiny def}}{=} \text{identity} \qquad \qquad p_{aw} \stackrel{\text{\tiny def}}{=} p_{w} \circ p_{a}$

•
$$\llbracket \mathcal{A} \rrbracket(w) \stackrel{\text{\tiny def}}{=} \gamma(p_w(\alpha))$$

ZERONESS input polynomial automaton \mathcal{A} question does $[\![\mathcal{A}]\!](w) = 0$ for all $w \in \Sigma^*$?

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook 0

Zeroness of Polynomial Automata

Zeroness

input polynomial automaton ${\mathcal A}$

question does $\llbracket \mathcal{A} \rrbracket(w) = 0$ for all $w \in \Sigma^*$?

THEOREM (BENEDIKT, DUFF, SHARAD, AND WORRELL, 2017) The zeroness problem for polynomial automata is ACKERMANN-complete.

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook 0

Zeroness of Polynomial Automata

Zeroness

input polynomial automaton $\ensuremath{\mathcal{A}}$

question does $\llbracket \mathcal{A} \rrbracket(w) = 0$ for all $w \in \Sigma^*$?

THEOREM (BENEDIKT, DUFF, SHARAD, AND WORRELL, 2017) The zeroness problem for polynomial automata is ACKERMANN-complete.

COROLLARY (BENEDIKT, DUFF, SHARAD, AND WORRELL, 2017) The equivalence problem for polynomial automata is ACKERMANN-complete.

Order Ideals 00000 Connections 0000 Invertible Polynomial Automata

Outlook o

Analysing Polynomial Automata

(Benedikt et al., 2017)

Define polynomial ideals $J_0 \subsetneq J_1 \subsetneq \cdots$ by

 $\mathbf{J}_k \stackrel{\text{\tiny def}}{=} \langle \gamma \circ \mathbf{p}_w \, | \, w \in \Sigma^{\leqslant k} \rangle$

Inductively,

$$\begin{split} J_0 &= \langle \gamma \rangle \\ J_{k+1} &= \langle f \circ p_a \mid f \in J_k, a \in \Sigma \cup \{ \epsilon \} \rangle \end{split}$$

By Hilbert's Basis Theorem, this stabilises to

 $\mathbf{J}_* = \langle \boldsymbol{\gamma} \circ \mathbf{p}_w \mid w \in \boldsymbol{\Sigma}^* \rangle$

and we can detect stabilisation using reduced Gröbner bases for the $J_{\rm k}.$

PROPOSITION Benedikt et al., 2017 $\llbracket \mathcal{A} \rrbracket(w) = 0$ for all $w \in \Sigma^*$ iff $\alpha \in \mathbf{V}(J_*)$.

Order Ideals 00000 Connections 0000 Invertible Polynomial Automata

Outlook 0

Analysing Polynomial Automata

(Benedikt et al., 2017)

Define polynomial ideals $J_0 \subsetneq J_1 \subsetneq \cdots$ by

$$J_k \stackrel{\text{\tiny def}}{=} \langle \gamma \circ p_w \, | \, w \in \Sigma^{\leqslant k} \rangle$$

Inductively,

$$\begin{split} J_0 &= \langle \gamma \rangle \\ J_{k+1} &= \langle f \circ p_a \ | \ f \in J_k \text{, } a \in \Sigma \cup \{\epsilon\} \rangle \end{split}$$

By Hilbert's Basis Theorem, this stabilises to

$$\mathbf{J}_* = \langle \boldsymbol{\gamma} \circ \mathbf{p}_w \mid w \in \boldsymbol{\Sigma}^* \rangle$$

and we can detect stabilisation using reduced Gröbner bases for the $J_{\boldsymbol{k}}.$

PROPOSITION Benedikt et al., 2017 $\llbracket \mathcal{A} \rrbracket(w) = 0$ for all $w \in \Sigma^*$ iff $\alpha \in \mathbf{V}(J_*)$.

Order Ideals 00000 Connections 0000 Invertible Polynomial Automata

Outlook 0

Analysing Polynomial Automata

(Benedikt et al., 2017)

Define polynomial ideals $J_0 \subsetneq J_1 \subsetneq \cdots$ by

$$J_k \stackrel{\text{\tiny def}}{=} \langle \gamma \circ p_w \, | \, w \in \Sigma^{\leqslant k} \rangle$$

Inductively,

$$\begin{split} J_0 &= \langle \gamma \rangle \\ J_{k+1} &= \langle f \circ p_a \ | \ f \in J_k, a \in \Sigma \cup \{\epsilon\} \rangle \end{split}$$

By Hilbert's Basis Theorem, this stabilises to

$$J_* = \langle \gamma \circ p_w \mid w \in \Sigma^* \rangle$$

and we can detect stabilisation using reduced Gröbner bases for the $J_{\rm k}.$

Proposition

Benedikt et al., 2017 $\llbracket \mathcal{A} \rrbracket(w) = 0$ for all $w \in \Sigma^*$ iff $\alpha \in V(J_*)$.

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook o

thus zeroness is decidable

- what about complexity upper bounds?
- turn to order ideals

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook 0

- thus zeroness is decidable
- what about complexity upper bounds?
- turn to order ideals

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook o

- thus zeroness is decidable
- what about complexity upper bounds?
- turn to order ideals

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook 0

Descending Chains

over a wqo

- ▶ well-quasi-order (X, ≤): every descending chain of downwards-closed sets is finite
- (𝒦, ⊑) is a wqo by Dickson's Lemma

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook

Descending Chains

over a wqo

- ▶ well-quasi-order (X, ≤): every descending chain of downwards-closed sets is finite
- (𝔅, ⊑) is a wqo by Dickson's Lemma

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook o

Descending Chains

over a wqo

- ▶ well-quasi-order (X, ≤): every descending chain of downwards-closed sets is finite
- ► (IN, □) is a wqo by Dickson's Lemma

 D_0

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook o

Descending Chains

over a wqo

- ▶ well-quasi-order (X, ≤): every descending chain of downwards-closed sets is finite
- ► (IN, □) is a wqo by Dickson's Lemma

 $D_0 \supseteq D_1$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook o

Descending Chains

over a wqo

- ▶ well-quasi-order (X, ≤): every descending chain of downwards-closed sets is finite
- ► (IN, □) is a wqo by Dickson's Lemma

 $\mathsf{D}_0 \supsetneq \mathsf{D}_1 \supsetneq \mathsf{D}_2$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook o

Descending Chains

over a wqo

- ▶ well-quasi-order (X, ≤): every descending chain of downwards-closed sets is finite
- ► (IN, □) is a wqo by Dickson's Lemma

 $\mathsf{D}_0 \supsetneq \mathsf{D}_1 \supsetneq \mathsf{D}_2 \supsetneq \mathsf{D}_3$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook o

Descending Chains

over a wqo

- ▶ well-quasi-order (X, ≤): every descending chain of downwards-closed sets is finite
- ► (IN, □) is a wqo by Dickson's Lemma

 $\mathsf{D}_0 \supsetneq \mathsf{D}_1 \supsetneq \mathsf{D}_2 \supsetneq \mathsf{D}_3 \supsetneq \mathsf{D}_4$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook o

Descending Chains

over a wqo

- ▶ well-quasi-order (X, ≤): every descending chain of downwards-closed sets is finite
- ► (IN, □) is a wqo by Dickson's Lemma

$\mathsf{D}_0 \supsetneq \mathsf{D}_1 \supsetneq \mathsf{D}_2 \supsetneq \mathsf{D}_3 \supsetneq \mathsf{D}_4 \supsetneq \mathsf{D}_5$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook o

Descending Chains

over a wqo

- well-quasi-order (X,≤): every descending chain of downwards-closed sets is finite
- ► (IN, □) is a wqo by Dickson's Lemma

 $\mathsf{D}_0 \supsetneq \mathsf{D}_1 \supsetneq \mathsf{D}_2 \supsetneq \mathsf{D}_3 \supsetneq \mathsf{D}_4 \supsetneq \mathsf{D}_5$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook o

Descending Chains

over a wqo

- well-quasi-order (X,≤): every descending chain of downwards-closed sets is finite
- ► (IN, □) is a wqo by Dickson's Lemma

 $\mathsf{D}_0 \supsetneq \mathsf{D}_1 \supsetneq \mathsf{D}_2 \supsetneq \mathsf{D}_3 \supsetneq \mathsf{D}_4 \supsetneq \mathsf{D}_5$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook

- downwards-closed sets over a wqo have a unique decomposition as finite unions of ideals
- ▶ ideals are the irreducible downwards-closed sets: $I \subseteq D_1 \cup D_2$ implies $I \subseteq D_1$ or $I \subseteq D_2$
- over \mathbb{N}^d : ideals represented as vectors in $(\mathbb{N} \cup \{\omega\})^d$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook o

- downwards-closed sets over a wqo have a unique decomposition as finite unions of ideals
- ideals are the irreducible downwards-closed sets: $I \subseteq D_1 \cup D_2$ implies $I \subseteq D_1$ or $I \subseteq D_2$
- over \mathbb{N}^d : ideals represented as vectors in $(\mathbb{N} \cup \{\omega\})^d$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook

Order Ideals

- downwards-closed sets over a wqo have a unique decomposition as finite unions of ideals
- ideals are the irreducible downwards-closed sets: $I \subseteq D_1 \cup D_2$ implies $I \subseteq D_1$ or $I \subseteq D_2$
- over \mathbb{N}^d : ideals represented as vectors in $(\mathbb{N} \cup \{\omega\})^d$

 $\mathsf{D}_0 = \{(\omega, 4)\}$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook

- downwards-closed sets over a wqo have a unique decomposition as finite unions of ideals
- ideals are the irreducible downwards-closed sets: $I \subseteq D_1 \cup D_2$ implies $I \subseteq D_1$ or $I \subseteq D_2$
- over \mathbb{N}^d : ideals represented as vectors in $(\mathbb{N} \cup \{\omega\})^d$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook

- downwards-closed sets over a wqo have a unique decomposition as finite unions of ideals
- ideals are the irreducible downwards-closed sets: $I \subseteq D_1 \cup D_2$ implies $I \subseteq D_1$ or $I \subseteq D_2$
- over \mathbb{N}^d : ideals represented as vectors in $(\mathbb{N} \cup \{\omega\})^d$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook o

- downwards-closed sets over a wqo have a unique decomposition as finite unions of ideals
- ideals are the irreducible downwards-closed sets: $I \subseteq D_1 \cup D_2$ implies $I \subseteq D_1$ or $I \subseteq D_2$
- over \mathbb{N}^d : ideals represented as vectors in $(\mathbb{N} \cup \{\omega\})^d$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook

Order Ideals

- downwards-closed sets over a wqo have a unique decomposition as finite unions of ideals
- over \mathbb{N}^d : ideals represented as vectors in $(\mathbb{N} \cup \{\omega\})^d$

 $D_4 = \{(1,4), (3,3), (5,2), (7,1), (\omega,0)\}$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook o

Order Ideals

- downwards-closed sets over a wqo have a unique decomposition as finite unions of ideals
- over \mathbb{N}^d : ideals represented as vectors in $(\mathbb{N} \cup \{\omega\})^d$

 $D_5 = \{(1,4), (3,3), (5,2), (7,1), (9,0)\}$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook 0

Dimension of Ideals over \mathbb{N}^d

For an ideal I seen as a vector in $(\mathbb{N} \cup \{\omega\})^d$

$$\begin{split} & \omega(I) \stackrel{\text{\tiny def}}{=} \{ \mathbf{1} \leqslant \mathbf{i} \leqslant \mathbf{d} \mid I(\mathbf{i}) = \omega \} \\ & \dim I \stackrel{\text{\tiny def}}{=} |\omega(I)| \end{split}$$

EXAMPLE For d = 3, $\omega((2, 10, \omega)) = \{3\}$ and $\dim(2, 10, \omega) = 1$.

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook

Μονοτονιζιτη

[Lazić and S., 2021]

- At every step k, since D_k ⊋ D_{k+1}, there must exist an ideal in D_k but not in D_{k+1}: we say it is proper at step k
- ▶ the chain is strongly monotone if, $\forall I_{k+1}$ proper at step k+1, $\exists I_k$ proper at step k s.t.

 $dimI_{k+1} \leqslant dimI_k$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook o

Μονοτονιζιτη

[Lazić and S., 2021]

- ▶ at every step k, since $D_k \supseteq D_{k+1}$, there must exist an ideal in D_k but not in D_{k+1} : we say it is proper at step k
- ► the chain is strongly monotone if, ∀I_{k+1} proper at step k+1, ∃I_k proper at step k s.t.

 $dimI_{k+1} \leqslant dimI_k$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook

Μονοτονιζιτη

[Lazić and S., 2021]

- ▶ at every step k, since $D_k \supseteq D_{k+1}$, there must exist an ideal in D_k but not in D_{k+1} : we say it is proper at step k
- ► the chain is ω monotone if, $\forall I_{k+1}$ proper at step k+1, $\exists I_k$ proper at step k s.t.

 $\omega(I_{k+1})\subseteq \omega(I_k)$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook o

Μονοτονιζιτη

[Novikov and Yakovenko, 1999; Benedikt et al., 2017]

- ▶ at every step k, since $D_k \supseteq D_{k+1}$, there must exist an ideal in D_k but not in D_{k+1} : we say it is proper at step k
- ► the chain is strongly monotone if, ∀I_{k+1} proper at step k+1, ∃I_k proper at step k s.t.

 $dim I_{k+1} \leqslant dim I_k$

Connections 0000 Invertible Polynomial Automata

Outlook 0

The Length of Descending Chains

Issue

The length can be arbitrary (also for strongly monotone chains): for all n,

$\{(0,\omega)\} \supsetneq \{(0,n)\} \supsetneq \{(0,n-1)\} \supsetneq \cdots \supsetneq \{(0,1)\} \supsetneq \{(0,0)\}$

Control

 $\begin{aligned} |\mathsf{D}| &\stackrel{\text{def}}{=} \max_{\mathsf{I} \in \mathsf{D}} |\mathsf{I}| \\ |\mathsf{I}| &\stackrel{\text{def}}{=} \max_{\mathsf{i} \not\in \omega(\mathsf{I})} \mathsf{I}(\mathsf{i}) \end{aligned}$

For $g \colon \mathbb{N} \to \mathbb{N}$ and $\mathfrak{n}_0 \in \mathbb{N}$: a chain $\mathbb{D}_0 \supseteq \mathbb{D}_1 \supseteq \cdots$ is (g, \mathfrak{n}_0) -controlled if, $\forall k$,

 $|\mathsf{D}_k| \leq g^k(\mathfrak{n}_0)$

Connections 0000 Invertible Polynomial Automata

Outlook 0

The Length of Descending Chains

Issue

The length can be arbitrary (also for strongly monotone chains): for all n,

 $\{(0,\omega)\} \supsetneq \{(0,n)\} \supsetneq \{(0,n-1)\} \supsetneq \cdots \supsetneq \{(0,1)\} \supsetneq \{(0,0)\}$

Control

$$\begin{split} \mathsf{D} & \stackrel{\text{def}}{=} \max_{\mathbf{I} \in \mathbf{D}} |\mathbf{I}| \\ & |\mathbf{I}| \stackrel{\text{def}}{=} \max_{\mathbf{i} \notin \omega(\mathbf{I})} \mathbf{I}(\mathbf{i}) \end{split}$$

For $g: \mathbb{N} \to \mathbb{N}$ and $n_0 \in \mathbb{N}$: a chain $D_0 \supseteq D_1 \supseteq \cdots$ is (g, n_0) -controlled if, $\forall k$,

 $|D_k|\leqslant g^k(\mathfrak{n}_0)$

Connections 0000 Invertible Polynomial Automata

Outlook 0

The Length of Descending Chains

Issue

The length can be arbitrary (also for strongly monotone chains): for all n,

 $\{(0,\omega)\} \supsetneq \{(0,n)\} \supsetneq \{(0,n-1)\} \supsetneq \cdots \supsetneq \{(0,1)\} \supsetneq \{(0,0)\}$

Control

$$\begin{split} |D| &\stackrel{\text{def}}{=} \max_{I \in D} |I| \\ |I| &\stackrel{\text{def}}{=} \max_{i \not\in \omega(I)} I(i) \end{split}$$

For $g: \mathbb{N} \to \mathbb{N}$ and $n_0 \in \mathbb{N}$: a chain $D_0 \supseteq D_1 \supseteq \cdots$ is (g, n_0) -controlled if, $\forall k$,

 $|D_k| \leqslant g^k(\mathfrak{n}_0)$

Connections 0000 Invertible Polynomial Automata

Outlook 0

The Length of Descending Chains

Issue

The length can be arbitrary (also for strongly monotone chains): for all n,

$$\{(0,\omega)\} \supseteq \{(0,n)\} \supseteq \{(0,n-1)\} \supseteq \cdots \supseteq \{(0,1)\} \supseteq \{(0,0)\}$$

Control

$$\begin{split} |D| &\stackrel{\text{def}}{=} \max_{I \in D} |I| \\ |I| &\stackrel{\text{def}}{=} \max_{i \notin \omega(I)} I(i) \end{split}$$

For $g: \mathbb{N} \to \mathbb{N}$ and $n_0 \in \mathbb{N}$: a chain $D_0 \supseteq D_1 \supseteq \cdots$ is (g, n_0) -controlled if, $\forall k$,

$$|D_k|\leqslant g^k(\mathfrak{n}_0)$$

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook

The Length of Descending Chains

Control

$$\begin{split} |D| &\stackrel{\text{def}}{=} \max_{I \in D} |I| \\ |I| &\stackrel{\text{def}}{=} \max_{i \notin \omega(I)} I(i) \end{split}$$

For $g: \mathbb{N} \to \mathbb{N}$ and $n_0 \in \mathbb{N}$: a chain $D_0 \supseteq D_1 \supseteq \cdots$ is (g, n_0) -controlled if, $\forall k$,

 $|D_k|\leqslant g^k(\mathfrak{n}_0)$

Example (Vector Addition Systems)

The descending chains in the dual backward coverability algorithm are ω -monotone and (g, n_0) -controlled by

$$g(x) \stackrel{\text{def}}{=} x + n \qquad \qquad n_0 \stackrel{\text{def}}{=} n$$

(n the size of the coverability instance)

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook

The Length of Descending Chains

Example (Vector Addition Systems)

The descending chains in the dual backward coverability algorithm are ω -monotone and (g, n_0) -controlled by

$$g(x) \stackrel{\text{\tiny def}}{=} x + n \qquad \qquad n_0 \stackrel{\text{\tiny def}}{=} n$$

(n the size of the coverability instance)

THEOREM (LENGTH FUNCTION THEOREM (LAZIĆ AND S., 2021)) (g,n)-controlled descending chains over $(\mathbb{N}^d, \sqsubseteq)$ for g primitive-recursive are of length bounded by

 $F_{\mathcal{O}(d)}(n)$

in the fast-growing hierarchy.

Connections 0000 Invertible Polynomial Automata

Outlook o

The Length of Descending Chains

Theorem (Length function theorem (Lazić and S., 2021)) (g,n)-controlled descending chains over $(\mathbb{N}^d, \sqsubseteq)$ for g primitive-recursive are of length bounded by

 $F_{\mathcal{O}(d)}(n)$

in the fast-growing hierarchy.

Theorem (Length function theorem (S. and Schütze, 2024)) Strongly monotone (g,n)-controlled descending chains over $(\mathbb{N}^d, \sqsubseteq)$ for $g(x) \stackrel{\text{def}}{=} x + n$ are of length bounded by

Order Ideals

Connections 0000 Invertible Polynomial Automata

Outlook

The Length of Descending Chains

THEOREM (LENGTH FUNCTION THEOREM (S. AND SCHÜTZE, 2024)) Strongly monotone (g,n)-controlled descending chains over $(\mathbb{N}^d, \sqsubseteq)$ for $g(x) \stackrel{\text{def}}{=} x + n$ are of length bounded by

 $n^{2^{O(d)}}$.

REMARK ((S. AND SCHÜTZE, 2024))

Strongly monotone (g,n)-controlled descending chains over $(\mathbb{N}^d, \sqsubseteq)$ for $g(x) \stackrel{\text{def}}{=} x \cdot n$ are of length bounded by

 $(dn)^d \uparrow\uparrow d$,

i.e., a tower of exponentials of height d + 1.

Order Ideals

Connections

Invertible Polynomial Automata

Outlook o

Setup

• work over an algebraically closed field \mathbb{A}

- multivariate polynomials over $\mathbf{x} = x_1, \dots, x_d$
- monomial $x_1^{u_1}\cdots x_d^{u_d}$ written as x^u for $u = u_1, \dots, u_d \in \mathbb{N}^d$

Order Ideals

Connections

Invertible Polynomial Automata

Outlook o

Setup

- work over an algebraically closed field \mathbb{A}
- multivariate polynomials over $\mathbf{x} = x_1, \dots, x_d$
- monomial $x_1^{u_1}\cdots x_d^{u_d}$ written as x^u for $u = u_1, \dots, u_d \in \mathbb{N}^d$

Order Ideals

Connections

Invertible Polynomial Automata

Outlook 0

Setup

- work over an algebraically closed field \mathbb{A}
- multivariate polynomials over $x = x_1, \dots, x_d$
- monomial $x_1^{u_1}\cdots x_d^{u_d}$ written as x^u for $u=u_1,\ldots,u_d\in \mathbb{N}^d$

Order Ideals

Connections

Invertible Polynomial Automata

Outlook 0

Setup

- work over an algebraically closed field \mathbb{A}
- multivariate polynomials over $x = x_1, \dots, x_d$
- \blacktriangleright monomial $x_1^{u_1}\cdots x_d^{u_d}$ written as x^u for $u=u_1,\ldots,u_d\in \mathbb{N}^d$
- monomial ordering \leq over \mathbb{N}^d that is graded: $\sum_{1 \leq i \leq d} \mathfrak{u}(i) < \sum_{1 \leq i \leq d} \mathfrak{u}'(i)$ implies $\mathfrak{u} \prec \mathfrak{u}'$

Order Ideals 00000 Connections

Outlook

Leading Monomials and Multidegrees

• for a polynomial $f = \sum_{u \in \mathbb{N}^d} c_u x^u$ in $\mathbb{A}[x]$,

 $multideg(f) \stackrel{\text{\tiny def}}{=} \max_{\preceq} \{ u \in \mathbb{N}^d \mid c_u \neq 0 \} \quad LM(f) \stackrel{\text{\tiny def}}{=} x^{multideg(f)}$

• for $J \subseteq \mathbb{A}[\mathbf{x}]$,

 $multideg(J) \stackrel{\text{\tiny def}}{=} \{multideg(f) \mid f \in J\} \quad LM(J) \stackrel{\text{\tiny def}}{=} \{LM(f) \mid f \in J\}$

DEFINITION Associate to any polynomial ideal $J \subseteq \mathbb{A}[x]$ its downwards-closed set

 $\mathsf{D} \stackrel{\text{\tiny def}}{=} \mathbb{N}^d \setminus \text{multideg}(J)$

- Leading Monomials and Multidegrees
 - for a polynomial $f = \sum_{u \in \mathbb{N}^d} c_u x^u$ in $\mathbb{A}[x]$,

 $multideg(f) \stackrel{\text{\tiny def}}{=} \max_{\preceq} \{ u \in \mathbb{N}^d \mid c_u \neq 0 \} \quad LM(f) \stackrel{\text{\tiny def}}{=} x^{multideg(f)}$

• for $J \subseteq \mathbb{A}[x]$,

 $multideg(J) \stackrel{\text{\tiny def}}{=} \{multideg(f) \mid f \in J\} \ LM(J) \stackrel{\text{\tiny def}}{=} \{LM(f) \mid f \in J\}$

DEFINITION Associate to any polynomial ideal $J \subseteq \mathbb{A}[\mathbf{x}]$ its downwards-closed set

 $\mathsf{D} \stackrel{\text{\tiny def}}{=} \mathbb{N}^d \setminus \text{multideg}(\mathsf{J})$

Leading Monomials and Multidegrees

• for a polynomial $f = \sum_{u \in \mathbb{N}^d} c_u x^u$ in $\mathbb{A}[x]$,

 $multideg(f) \stackrel{\text{\tiny def}}{=} \max_{\preceq} \{ u \in \mathbb{N}^d \mid c_u \neq 0 \} \quad LM(f) \stackrel{\text{\tiny def}}{=} x^{multideg(f)}$

• for $J \subseteq \mathbb{A}[x]$,

 $multideg(J) \stackrel{\text{\tiny def}}{=} \{multideg(f) \mid f \in J\} \ LM(J) \stackrel{\text{\tiny def}}{=} \{LM(f) \mid f \in J\}$

Definition Associate to any polynomial ideal $J\subseteq \mathbb{A}[x]$ its downwards-closed set

 $\mathsf{D} \stackrel{\text{\tiny def}}{=} \mathbb{N}^d \setminus \mathsf{multideg}(\mathsf{J})$

Order Ideals 00000 Connections

Invertible Polynomial Automata

Outlook 0

Leading Monomials and Multidegrees

Definition Associate to any polynomial ideal $J\subseteq \mathbb{A}[x]$ its downwards-closed set

 $D \stackrel{\text{\tiny def}}{=} \mathbb{N}^d \setminus multideg(J)$

Remark

For a Gröbner basis G of $J,\, \langle LM(G)\rangle = \langle LM(J)\rangle,$ thus equivalently

 $D \stackrel{\text{\tiny def}}{=} \mathbb{N}^d \setminus multideg(LM(Grobner(J)))$

Benedikt et al., 2017

THEOREM (BENEDIKT, DUFF, SHARAD, AND WORRELL, 2017) The zeroness problem for polynomial automata is in ACKERMANN.

- ▶ $J_0 \subsetneq J_1 \subsetneq \dots \subseteq J_*$ yields $D_0 \supseteq D_1 \supseteq \dots \supseteq D_*$ where $D_k \stackrel{\text{def}}{=} \mathbb{N}^d \setminus \text{multideg}(J_k)$
- ▶ Dubé (1990): degree bound of $2(t+1)^{2^d}$ on Gröbner bases of $\langle f_1, ..., f_m \rangle$ where the f_i have total degree $\leq t$
- ▶ Benedikt et al. (2017, Prop. 4) the chain is (g,n)-controlled for $n \stackrel{\text{def}}{=} 2(t+1)^{2^d}$ and $g(x) \stackrel{\text{def}}{=} x \cdot n$
- apply the length function theorem for descending chains:
 g is primitive-recursive, thus F_{O(d)} upper bound

Benedikt et al., 2017

THEOREM (BENEDIKT, DUFF, SHARAD, AND WORRELL, 2017)

The zeroness problem for polynomial automata is in ACKERMANN.

• $J_0 \subsetneq J_1 \subsetneq \cdots \subseteq J_*$ yields $D_0 \supsetneq D_1 \supsetneq \cdots \supseteq D_*$ where $D_k \stackrel{\text{def}}{=} \mathbb{N}^d \setminus \text{multideg}(J_k)$

▶ Dubé (1990): degree bound of $2(t+1)^{2^d}$ on Gröbner bases of $\langle f_1, ..., f_m \rangle$ where the f_i have total degree $\leq t$

- ▶ Benedikt et al. (2017, Prop. 4) the chain is (g,n)-controlled for $n \stackrel{\text{def}}{=} 2(t+1)^{2^d}$ and $g(x) \stackrel{\text{def}}{=} x \cdot n$
- apply the length function theorem for descending chains:
 g is primitive-recursive, thus F_{O(d)} upper bound

Benedikt et al., 2017

THEOREM (BENEDIKT, DUFF, SHARAD, AND WORRELL, 2017)

The zeroness problem for polynomial automata is in ACKERMANN.

- $J_0 \subsetneq J_1 \subsetneq \cdots \subseteq J_*$ yields $D_0 \supsetneq D_1 \supsetneq \cdots \supseteq D_*$ where $D_k \stackrel{\text{def}}{=} \mathbb{N}^d \setminus \text{multideg}(J_k)$
- ▶ Dubé (1990): degree bound of $2(t+1)^{2^d}$ on Gröbner bases of $\langle f_1, ..., f_m \rangle$ where the f_i have total degree $\leq t$
- ▶ Benedikt et al. (2017, Prop. 4) the chain is (g,n)-controlled for $n \stackrel{\text{def}}{=} 2(t+1)^{2^d}$ and $g(x) \stackrel{\text{def}}{=} x \cdot n$
- apply the length function theorem for descending chains:
 g is primitive-recursive, thus F_{O(d)} upper bound

Benedikt et al., 2017

THEOREM (BENEDIKT, DUFF, SHARAD, AND WORRELL, 2017)

The zeroness problem for polynomial automata is in ACKERMANN.

- $J_0 \subsetneq J_1 \subsetneq \cdots \subseteq J_*$ yields $D_0 \supsetneq D_1 \supsetneq \cdots \supseteq D_*$ where $D_k \stackrel{\text{def}}{=} \mathbb{N}^d \setminus \text{multideg}(J_k)$
- ▶ Dubé (1990): degree bound of $2(t+1)^{2^d}$ on Gröbner bases of $\langle f_1, ..., f_m \rangle$ where the f_i have total degree $\leq t$
- ▶ Benedikt et al. (2017, Prop. 4) the chain is (g,n)-controlled for $n \stackrel{\text{def}}{=} 2(t+1)^{2^d}$ and $g(x) \stackrel{\text{def}}{=} x \cdot n$
- apply the length function theorem for descending chains:
 g is primitive-recursive, thus F_{O(d)} upper bound

Benedikt et al., 2017

THEOREM (BENEDIKT, DUFF, SHARAD, AND WORRELL, 2017)

The zeroness problem for polynomial automata is in ACKERMANN.

- $J_0 \subsetneq J_1 \subsetneq \cdots \subseteq J_*$ yields $D_0 \supsetneq D_1 \supsetneq \cdots \supseteq D_*$ where $D_k \stackrel{\text{def}}{=} \mathbb{N}^d \setminus \text{multideg}(J_k)$
- ▶ Dubé (1990): degree bound of $2(t+1)^{2^d}$ on Gröbner bases of $\langle f_1, ..., f_m \rangle$ where the f_i have total degree $\leq t$
- ▶ Benedikt et al. (2017, Prop. 4) the chain is (g,n)-controlled for $n \stackrel{\text{def}}{=} 2(t+1)^{2^d}$ and $g(x) \stackrel{\text{def}}{=} x \cdot n$
- apply the length function theorem for descending chains:
 g is primitive-recursive, thus F_{O(d)} upper bound

Order Ideals

Connections

Invertible Polynomial Automata

Outlook o

- complexity upper bound from the length function theorem on descending chains over N^d
- can we exploit the improved bounds for strongly monotone descending chains?

Order Ideals 00000 Connections 0000 Invertible Polynomial Automata • 0 0 0 Outlook 0

DIMENSION OF AN ALGEBRAIC VARIETY

- multiple equivalent definitions
- over an algebraically closed field with a graded monomial ordering, for a variety $V \subseteq \mathbb{A}^d$:

 $\dim V \stackrel{\text{\tiny def}}{=} \max\{\dim I \mid I \text{ order ideal s.t. } I \subseteq \mathbb{N}^d \setminus \text{multideg}(I(V))\}$

Connections 0000 Invertible Polynomial Automata

Monotonicity Redux

Consider a descending chain $V_0 \supseteq V_1 \supseteq \cdots$ of varieties.

- \blacktriangleright each V_k is a finite union of incomparable irreducible varieties
- \blacktriangleright an irreducible variety at step k is proper if it appears in V_k but not V_{k+1}
- ► $V_0 \supseteq V_1 \supseteq \cdots$ is strongly monotone if, $\forall W_{k+1}$ proper at step k+1, $\exists W_k$ proper at step k s.t. dim $W_{k+1} \leq \dim W_k$

PROPOSITION Let $V_0 \supseteq V_1 \supseteq \cdots$ be a descending chain of varieties and $D_0 \supseteq D_1 \supseteq \cdots$ the corresponding descending chain of downwards-closed sets $D_k \stackrel{\text{def}}{=} \mathbb{N}^d \setminus \text{multideg}(I(V_k))$. Then one is strongly monotone iff the other is strongly monotone.

Order Ideals 00000 Connections 0000 Invertible Polynomial Automata

Outlook o

Monotonicity Redux

Consider a descending chain $V_0 \supsetneq V_1 \supsetneq \cdots$ of varieties.

- $\blacktriangleright \ each \ V_k \ is \ a \ finite \ union \ of \ incomparable \ irreducible \ varieties$
- \blacktriangleright an irreducible variety at step k is proper if it appears in V_k but not V_{k+1}
- ► $V_0 \supseteq V_1 \supseteq \cdots$ is strongly monotone if, $\forall W_{k+1}$ proper at step k+1, $\exists W_k$ proper at step k s.t. dim $W_{k+1} \leq \dim W_k$

PROPOSITION Let $V_0 \supseteq V_1 \supseteq \cdots$ be a descending chain of varieties and $D_0 \supseteq D_1 \supseteq \cdots$ the corresponding descending chain of downwards-closed sets $D_k \stackrel{\text{def}}{=} \mathbb{N}^d \setminus \text{multideg}(I(V_k))$. Then one is strongly monotone iff the other is strongly monotone.

Connections 0000 Invertible Polynomial Automata

Outlook o

Monotonicity Redux

Consider a descending chain $V_0 \supsetneq V_1 \supsetneq \cdots$ of varieties.

- \blacktriangleright each V_k is a finite union of incomparable irreducible varieties
- \blacktriangleright an irreducible variety at step k is proper if it appears in V_k but not V_{k+1}
- ▶ $V_0 \supseteq V_1 \supseteq \cdots$ is strongly monotone if, $\forall W_{k+1}$ proper at step k+1, $\exists W_k$ proper at step k s.t. dim $W_{k+1} \leq \dim W_k$

PROPOSITION Let $V_0 \supseteq V_1 \supseteq \cdots$ be a descending chain of varieties and $D_0 \supseteq D_1 \supseteq \cdots$ the corresponding descending chain of downwards-closed sets $D_k \stackrel{\text{def}}{=} \mathbb{N}^d \setminus \text{multideg}(I(V_k))$. Then one is strongly monotone iff the other is strongly monotone.

Connections 0000 Invertible Polynomial Automata

Outlook o

Monotonicity Redux

Consider a descending chain $V_0 \supsetneq V_1 \supsetneq \cdots$ of varieties.

- $\blacktriangleright \ each \ V_k \ is \ a \ finite \ union \ of \ incomparable \ irreducible \ varieties$
- \blacktriangleright an irreducible variety at step k is proper if it appears in V_k but not V_{k+1}
- ► $V_0 \supseteq V_1 \supseteq \cdots$ is strongly monotone if, $\forall W_{k+1}$ proper at step k+1, $\exists W_k$ proper at step k s.t. dim $W_{k+1} \leq \dim W_k$

PROPOSITION Let $V_0 \supseteq V_1 \supseteq \cdots$ be a descending chain of varieties and $D_0 \supseteq D_1 \supseteq \cdots$ the corresponding descending chain of downwards-closed sets $D_k \stackrel{\text{def}}{=} \mathbb{N}^d \setminus \text{multideg}(I(V_k))$. Then one is strongly monotone iff the other is strongly monotone.

Connections 0000 Invertible Polynomial Automata

Outlook o

Monotonicity Redux

Consider a descending chain $V_0 \supsetneq V_1 \supsetneq \cdots$ of varieties.

- $\blacktriangleright \ each \ V_k \ is \ a \ finite \ union \ of \ incomparable \ irreducible \ varieties$
- \blacktriangleright an irreducible variety at step k is proper if it appears in V_k but not V_{k+1}
- ► $V_0 \supseteq V_1 \supseteq \cdots$ is strongly monotone if, $\forall W_{k+1}$ proper at step k+1, $\exists W_k$ proper at step k s.t. dim $W_{k+1} \leq \dim W_k$

PROPOSITION Let $V_0 \supseteq V_1 \supseteq \cdots$ be a descending chain of varieties and $D_0 \supseteq D_1 \supseteq \cdots$ the corresponding descending chain of downwards-closed sets $D_k \stackrel{\text{def}}{=} \mathbb{N}^d \setminus \text{multideg}(\mathbf{I}(V_k))$. Then one is strongly monotone iff the other is strongly monotone.

Order Ideals 00000 Connections 0000 Invertible Polynomial Automata

Outlook 0

Invertible Polynomial Automata

Benedikt et al., 2017

- ▶ for each $a \in \Sigma$, p_a has a rational inverse q_a : $\mathbb{A}^d \to \mathbb{A}^d$
- consequence: each p_a and q_a preserves the dimension
- ▶ further consequence: $V_0 \supseteq V_1 \supseteq \cdots$ where $V_k \stackrel{\text{def}}{=} V(J_k)$ is strongly monotone (Benedikt et al., 2017, Prop. 6)
Order Ideals 00000 Connections 0000 Invertible Polynomial Automata

Outlook o

Complexity Upper Bound

THEOREM (BENEDIKT, DUFF, SHARAD, AND WORRELL, 2017)

The zeroness problem for invertible polynomial automata is in TOWER.

• consider $V_0 \supseteq V_1 \supseteq \cdots$ and $D_0 \supseteq D_1 \supseteq \cdots$ where $V_k \stackrel{\text{def}}{=} V(J_k)$ and

 $\mathsf{D}_k \stackrel{\text{\tiny def}}{=} \mathbb{N}^d \setminus \mathsf{multideg}(\mathbf{I}(V_k)) = \mathbb{N}^d \setminus \mathsf{multideg}(\sqrt{J_k})$

• Laplagne (2006): degree bound of $2(t+1)^{2^{O(d^2)}}$ on Gröbner bases of $\sqrt{\langle f_1, \ldots, f_m \rangle}$ where the f_i have total degree $\leq t$

• the chain is (g,n)-controlled for $n \stackrel{\text{def}}{=} 2(t+1)^{2^{c \cdot d^2}}$ and $g(x) \stackrel{\text{def}}{=} x \cdot n$ for some c

Sector bould a bound the constraint of the co

Order Ideals D0000 Connections 0000 Invertible Polynomial Automata

Outlook

Complexity Upper Bound

THEOREM (BENEDIKT, DUFF, SHARAD, AND WORRELL, 2017)

The zeroness problem for invertible polynomial automata is in TOWER.

• consider $V_0\supseteq V_1\supseteq\cdots$ and $D_0\supseteq D_1\supseteq\cdots$ where $V_k\stackrel{\text{\tiny def}}{=} V(J_k)$ and

 $\mathsf{D}_k \stackrel{\text{\tiny def}}{=} \mathbb{N}^d \setminus \mathsf{multideg}(\mathbf{I}(V_k)) = \mathbb{N}^d \setminus \mathsf{multideg}(\sqrt{J_k})$

• Laplagne (2006): degree bound of $2(t+1)^{2^{O(d^2)}}$ on Gröbner bases of $\sqrt{\langle f_1, \ldots, f_m \rangle}$ where the f_i have total degree $\leq t$

• the chain is (g,n)-controlled for $n \stackrel{\text{def}}{=} 2(t+1)^{2^{c \cdot d^2}}$ and $g(x) \stackrel{\text{def}}{=} x \cdot n$ for some c

Order Ideals D0000 Connections 0000 Invertible Polynomial Automata

Outlook

Complexity Upper Bound

THEOREM (BENEDIKT, DUFF, SHARAD, AND WORRELL, 2017)

The zeroness problem for invertible polynomial automata is in TOWER.

• consider
$$V_0\supseteq V_1\supseteq\cdots$$
 and $D_0\supseteq D_1\supseteq\cdots$ where $V_k\stackrel{\text{def}}{=} V(J_k)$ and

 $\mathsf{D}_k \stackrel{\text{\tiny def}}{=} \mathbb{N}^d \setminus \mathsf{multideg}(\mathbf{I}(V_k)) = \mathbb{N}^d \setminus \mathsf{multideg}(\sqrt{J_k})$

• Laplagne (2006): degree bound of $2(t+1)^{2^{O(d^2)}}$ on Gröbner bases of $\sqrt{\langle f_1, \dots, f_m \rangle}$ where the f_i have total degree $\leq t$

• the chain is (g,n)-controlled for $n \stackrel{\text{def}}{=} 2(t+1)^{2^{c \cdot d^2}}$ and $g(x) \stackrel{\text{def}}{=} x \cdot n$ for some c

se construction for each construction and construction of the second second

Order Ideals D0000 Connections 0000 Invertible Polynomial Automata

Outlook

Complexity Upper Bound

THEOREM (BENEDIKT, DUFF, SHARAD, AND WORRELL, 2017)

The zeroness problem for invertible polynomial automata is in TOWER.

• consider
$$V_0\supseteq V_1\supseteq\cdots$$
 and $D_0\supseteq D_1\supseteq\cdots$ where $V_k\stackrel{\text{def}}{=} V(J_k)$ and

 $D_k \stackrel{\text{\tiny def}}{=} \mathbb{N}^d \setminus multideg(\mathbf{I}(V_k)) = \mathbb{N}^d \setminus multideg(\sqrt{J_k})$

• Laplagne (2006): degree bound of $2(t+1)^{2^{O(d^2)}}$ on Gröbner bases of $\sqrt{\langle f_1, \dots, f_m \rangle}$ where the f_i have total degree $\leq t$

• the chain is (g,n)-controlled for $n \stackrel{\text{def}}{=} 2(t+1)^{2^{c \cdot d^2}}$ and $g(x) \stackrel{\text{def}}{=} x \cdot n$ for some c

Order Ideals D0000 Connections 0000 Invertible Polynomial Automata

Outlook O

Complexity Upper Bound

 \blacktriangleright consider $V_0\supseteq V_1\supseteq \cdots$ and $D_0\supseteq D_1\supseteq \cdots$ where $V_k \stackrel{\text{def}}{=} V(J_k)$ and

 $D_k \stackrel{\text{\tiny def}}{=} \mathbb{N}^d \setminus multideg(\mathbf{I}(V_k)) = \mathbb{N}^d \setminus multideg(\sqrt{J_k})$

- Laplagne (2006): degree bound of $2(t+1)^{2^{O(d^2)}}$ on Gröbner bases of $\sqrt{\langle f_1, \ldots, f_m \rangle}$ where the f_i have total degree $\leqslant t$
- ▶ the chain is (g,n)-controlled for $n \stackrel{\text{def}}{=} 2(t+1)^{2^{c \cdot d^2}}$ and $g(x) \stackrel{\text{def}}{=} x \cdot n$ for some c
- apply the length function theorem for strongly monotone descending chains: a tower of exponentials of height d+1 as upper bound

Order Ideals

Connections 0000 Invertible Polynomial Automata

- order ideals as a means to obtain complexity bounds for applications of Hilbert's Basis Theorem
- ▶ what about Gröbner basis computations, e.g., by Buchberger's algorithm or F4/F5? They essentially work by computing an ascending chain of polynomial ideals $\langle LM(G_0) \rangle \subseteq \langle LM(G_1) \rangle \subseteq \cdots$
 - they can be computed in exponential space (Kühnle and Mayr, 1996), but this relies on the degree bounds of Dubé (1990)
 - for Buchberger's algorithm, all we have are Ackermannian upper bounds (Dubé, Mishra, and Yap, 1995)!

Order Ideals

Connections 0000 Invertible Polynomial Automata

- order ideals as a means to obtain complexity bounds for applications of Hilbert's Basis Theorem
- what about Gröbner basis computations, e.g., by Buchberger's algorithm or F4/F5? They essentially work by computing an ascending chain of polynomial ideals $\langle LM(G_0) \rangle \subseteq \langle LM(G_1) \rangle \subseteq \cdots$
 - they can be computed in exponential space (Kühnle and Mayr, 1996), but this relies on the degree bounds of Dubé (1990)
 - for Buchberger's algorithm, all we have are Ackermannian upper bounds (Dubé, Mishra, and Yap, 1995)!

Order Ideals

Connections 0000 Invertible Polynomial Automata

- order ideals as a means to obtain complexity bounds for applications of Hilbert's Basis Theorem
- what about Gröbner basis computations, e.g., by Buchberger's algorithm or F4/F5? They essentially work by computing an ascending chain of polynomial ideals $\langle LM(G_0) \rangle \subseteq \langle LM(G_1) \rangle \subseteq \cdots$
 - they can be computed in exponential space (Kühnle and Mayr, 1996), but this relies on the degree bounds of Dubé (1990)
 - for Buchberger's algorithm, all we have are Ackermannian upper bounds (Dubé, Mishra, and Yap, 1995)!

Order Ideals

Connections 0000 Invertible Polynomial Automata

- order ideals as a means to obtain complexity bounds for applications of Hilbert's Basis Theorem
- what about Gröbner basis computations, e.g., by Buchberger's algorithm or F4/F5? They essentially work by computing an ascending chain of polynomial ideals $\langle LM(G_0) \rangle \subseteq \langle LM(G_1) \rangle \subseteq \cdots$
 - they can be computed in exponential space (Kühnle and Mayr, 1996), but this relies on the degree bounds of Dubé (1990)
 - for Buchberger's algorithm, all we have are Ackermannian upper bounds (Dubé, Mishra, and Yap, 1995)!