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Outline

Hilbert’s Basis Theorem
▶ involved e.g., in computing Zariski closures

order ideals
▶ over well-quasi-orders
▶ allows to derive complexity statements

connection
▶ illustration on polynomial automata
▶ invertible polynomial automata and the

dimension of ideals
▶ what about Buchberger’s algorithm?
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Motivating Example

A loop with polynomial
updates

x := 1/3;

y := -5;

while (*) {

choose

(x,y) := (2y,y*x);

or

(x,y) := (1, 3x);

}

return (x-1)*(y+1);

... seen as a polynomial
automaton

(1/3,−5)(1/3,−5) (x−1)(y+1)

a : (2y,xy)

b : (1,3x)
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Polynomial Automata

A polynomial automaton A

of dimension d

▶ finite alphabet Σ

▶ initial configuration α ∈Q
d

▶ polynomial updates
(pa)a∈Σ : Q

d →Q
d

▶ polynomial output
γ : Qd →Q

(1/3,−5)(1/3,−5) (x−1)(y+1)

a : (2y,xy)

b : (1,3x)
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Zeroness of Polynomial Automata

Semantics
▶ pw : Qd →Q

d for w ∈ Σ∗

pε
def= identity paw

def= pw ◦pa

▶ JAK(w) def= γ(pw(α))

Zeroness
input polynomial automaton A

question does JAK(w) = 0 for all w ∈ Σ∗?
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Zeroness of Polynomial Automata

Zeroness
input polynomial automaton A

question does JAK(w) = 0 for all w ∈ Σ∗?

Theorem (Benedikt, Duff, Sharad, and Worrell, 2017)

The zeroness problem for polynomial automata is
ACKERMANN-complete.
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Zeroness of Polynomial Automata

Zeroness
input polynomial automaton A

question does JAK(w) = 0 for all w ∈ Σ∗?

Theorem (Benedikt, Duff, Sharad, and Worrell, 2017)

The zeroness problem for polynomial automata is
ACKERMANN-complete.

Corollary (Benedikt, Duff, Sharad, and Worrell, 2017)

The equivalence problem for polynomial automata is
ACKERMANN-complete.
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Analysing Polynomial Automata
(Benedikt et al., 2017)

Define polynomial ideals J0 ⊊ J1 ⊊ · · · by

Jk
def= ⟨γ ◦pw |w ∈ Σ⩽k⟩

Inductively,

J0 = ⟨γ⟩
Jk+1 = ⟨f ◦pa | f ∈ Jk,a ∈ Σ∪ {ε}⟩

By Hilbert’s Basis Theorem, this stabilises to

J∗ = ⟨γ ◦pw |w ∈ Σ∗⟩
and we can detect stabilisation using reduced Gröbner
bases for the Jk.

Proposition
Benedikt et al., 2017 JAK(w) = 0 for allw ∈ Σ∗ iff α ∈V(J∗).
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▶ thus zeroness is decidable

▶ what about complexity upper bounds?

▶ turn to order ideals
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Descending Chains
over a wqo

▶ well-quasi-order (X,⩽):
every descending chain of
downwards-closed sets is
finite

▶ (N,⊑) is a wqo by Dickson’s
Lemma

D0 ⊋ D1 ⊋ D2 ⊋ D3 ⊋ D4 ⊋ D5
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Order Ideals

▶ downwards-closed sets over
a wqo have a unique
decomposition as finite
unions of ideals

▶ ideals are the irreducible
downwards-closed sets:
I⊆D1 ∪D2 implies I⊆D1
or I⊆D2

▶ over Nd: ideals represented
as vectors in (N∪ {ω})d

(ω,4)(1,4)

(ω,3)

(1,4)

(3,3)

(ω,2)

(1,4)

(3,3)

(5,2)

(ω,1)

(1,4)

(3,3)

(5,2)

(7,1)

(ω,0)

(1,4)

(3,3)

(5,2)

(7,1)

(9,0)
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Dimension of Ideals overN
d

For an ideal I seen as a vector in (N∪ {ω})d

ω(I) def= {1 ⩽ i⩽ d | I(i) =ω}

dimI def= |ω(I)|

Example
For d= 3, ω((2,10,ω)) = {3} and dim(2,10,ω) = 1.
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Monotonicity
[Lazić and S., 2021]

▶ at every step k, since
Dk ⊋Dk+1, there must exist
an ideal in Dk but not in
Dk+1: we say it is proper at
step k

▶ the chain is strongly
monotone if, ∀Ik+1 proper at
step k+1, ∃Ik proper at
step k s.t.

dimIk+1 ⩽ dimIk

(ω,4)

(ω,3)

(ω,2)

(ω,1)

(ω,0)

D0⊋ D1⊋ D2⊋ D3⊋ D4⊋ D5
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Monotonicity
[Novikov and Yakovenko, 1999; Benedikt et al., 2017]

▶ at every step k, since
Dk ⊋Dk+1, there must exist
an ideal in Dk but not in
Dk+1: we say it is proper at
step k

▶ the chain is strongly
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The Length of Descending Chains

Issue
The length can be arbitrary (also for strongly monotone
chains): for all n,

{(0,ω)} ⊋ {(0,n)} ⊋ {(0,n−1)} ⊋ · · · ⊋ {(0,1)} ⊋ {(0,0)}

Control

|D| def= max
I∈D

|I|

|I| def= max
i<ω(I)

I(i)

For g : N→N and n0 ∈N: a
chain D0 ⊋D1 ⊋ · · · is
(g,n0)-controlled if, ∀k,

|Dk|⩽ gk(n0)
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|I|
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i<ω(I)

I(i)

For g : N→N and n0 ∈N: a
chain D0 ⊋D1 ⊋ · · · is
(g,n0)-controlled if, ∀k,

|Dk|⩽ gk(n0)

Example (Vector Addition Systems)
The descending chains in the dual backward coverability
algorithm are ω-monotone and (g,n0)-controlled by

g(x) def= x+n n0
def= n

(n the size of the coverability instance)
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The Length of Descending Chains
Example (Vector Addition Systems)
The descending chains in the dual backward coverability
algorithm are ω-monotone and (g,n0)-controlled by

g(x) def= x+n n0
def= n

(n the size of the coverability instance)

Theorem (Length function theorem (Lazić and S., 2021))
(g,n)-controlled descending chains over (Nd,⊑) for
g primitive-recursive are of length bounded by

FO(d)(n)

in the fast-growing hierarchy.
12/21



Polynomial Ideals Order Ideals Connections Invertible Polynomial Automata Outlook

The Length of Descending Chains
Theorem (Length function theorem (Lazić and S., 2021))
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in the fast-growing hierarchy.

Theorem (Length function theorem (S. and Schütze, 2024))
Strongly monotone (g,n)-controlled descending chains
over (Nd,⊑) for g(x) def= x+n are of length bounded by

n2O(d)
.
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The Length of Descending Chains
Theorem (Length function theorem (S. and Schütze, 2024))
Strongly monotone (g,n)-controlled descending chains
over (Nd,⊑) for g(x) def= x+n are of length bounded by

n2O(d)
.

Remark ((S. and Schütze, 2024))

Strongly monotone (g,n)-controlled descending chains
over (Nd,⊑) for g(x) def= x ·n are of length bounded by

(dn)d ↑↑ d ,

i.e., a tower of exponentials of height d+1.
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Setup

▶ work over an algebraically closed field A

▶ multivariate polynomials over x= x1, . . . ,xd

▶ monomial xu1
1 · · ·xud

d written as xu for u= u1, . . . ,ud ∈N
d

▶ monomial ordering ⪯ over Nd that is graded:∑
1⩽i⩽du(i)<

∑
1⩽i⩽du

′(i) implies u≺ u ′
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Leading Monomials and Multidegrees
▶ for a polynomial f=

∑
u∈Nd cux

u in A[x],

multideg(f) def= max
⪯

{u ∈N
d | cu , 0} LM(f) def= xmultideg(f)

▶ for J⊆A[x],

multideg(J) def= {multideg(f) | f ∈ J} LM(J) def= {LM(f) | f ∈ J}

Definition
Associate to any polynomial ideal J⊆A[x] its
downwards-closed set

D def=N
d \multideg(J)
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Leading Monomials and Multidegrees

Definition
Associate to any polynomial ideal J⊆A[x] its
downwards-closed set

D def=N
d \multideg(J)

Remark
For a Gröbner basis G of J, ⟨LM(G)⟩= ⟨LM(J)⟩, thus
equivalently

D def=N
d \multideg(LM(Grobner(J)))
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General Complexity Upper Bound
Benedikt et al., 2017

Theorem (Benedikt, Duff, Sharad, and Worrell, 2017)

The zeroness problem for polynomial automata is in
ACKERMANN.

▶ J0 ⊊ J1 ⊊ · · · ⊆ J∗ yields D0 ⊋D1 ⊋ · · · ⊇D∗ where
Dk

def=N
d \multideg(Jk)

▶ Dubé (1990): degree bound of 2(t+1)2d
on Gröbner

bases of ⟨f1, . . . ,fm⟩ where the fi have total degree ⩽ t

▶ Benedikt et al. (2017, Prop. 4) the chain is
(g,n)-controlled for n def= 2(t+1)2d

and g(x) def= x ·n

▶ apply the length function theorem for descending chains:
g is primitive-recursive, thus FO(d) upper bound
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▶ complexity upper bound from the length function
theorem on descending chains over Nd

▶ can we exploit the improved bounds for strongly
monotone descending chains?
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Dimension of an Algebraic Variety

▶ multiple equivalent definitions

▶ over an algebraically closed field with a graded
monomial ordering, for a variety V ⊆A

d:

dimV def= max{dimI | I order ideal s.t. I⊆N
d\multideg(I(V))}
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Monotonicity Redux
Consider a descending chain V0 ⊋ V1 ⊋ · · · of varieties.

▶ each Vk is a finite union of incomparable irreducible
varieties

▶ an irreducible variety at step k is proper if it appears in Vk

but not Vk+1

▶ V0 ⊋ V1 ⊋ · · · is strongly monotone if, ∀Wk+1 proper at
step k+1, ∃Wk proper at step k s.t. dimWk+1 ⩽ dimWk

Proposition
Let V0 ⊋ V1 ⊋ · · · be a descending chain of varieties and
D0 ⊋D1 ⊋ · · · the corresponding descending chain of
downwards-closed setsDk

def=N
d \multideg(I(Vk)). Then

one is strongly monotone iff the other is strongly
monotone.
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Invertible Polynomial Automata
Benedikt et al., 2017

▶ for each a ∈ Σ, pa has a rational inverse qa : A
d →A

d

▶ consequence: each pa and qa preserves the dimension

▶ further consequence: V0 ⊇ V1 ⊇ ·· · where Vk
def=V(Jk) is

strongly monotone (Benedikt et al., 2017, Prop. 6)
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Complexity Upper Bound
Theorem (Benedikt, Duff, Sharad, and Worrell, 2017)

The zeroness problem for invertible polynomial automata
is in TOWER.

▶ consider V0 ⊇ V1 ⊇ ·· · and D0 ⊇D1 ⊇ ·· · where
Vk

def=V(Jk) and

Dk
def=N

d \multideg(I(Vk)) =N
d \multideg(

√
Jk)

▶ Laplagne (2006): degree bound of 2(t+1)2O(d2)
on

Gröbner bases of
√

⟨f1, . . . ,fm⟩ where the fi have total
degree ⩽ t

▶ the chain is (g,n)-controlled for n def= 2(t+1)2c·d2

and
g(x) def= x ·n for some c

▶ apply the length function theorem for strongly monotone
descending chains: a tower of exponentials of height
d+1 as upper bound
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Gröbner bases of
√

⟨f1, . . . ,fm⟩ where the fi have total
degree ⩽ t

▶ the chain is (g,n)-controlled for n def= 2(t+1)2c·d2

and
g(x) def= x ·n for some c

▶ apply the length function theorem for strongly monotone
descending chains: a tower of exponentials of height
d+1 as upper bound

20/21



Polynomial Ideals Order Ideals Connections Invertible Polynomial Automata Outlook

Outlook

▶ order ideals as a means to obtain complexity bounds for
applications of Hilbert’s Basis Theorem

▶ what about Gröbner basis computations, e.g., by
Buchberger’s algorithm or F4/F5? They essentially work
by computing an ascending chain of polynomial ideals
⟨LM(G0)⟩ ⊆ ⟨LM(G1)⟩ ⊆ · · ·
▶ they can be computed in exponential space (Kühnle and Mayr,

1996), but this relies on the degree bounds of Dubé (1990)

▶ for Buchberger’s algorithm, all we have are Ackermannian
upper bounds (Dubé, Mishra, and Yap, 1995)!

21/21



Polynomial Ideals Order Ideals Connections Invertible Polynomial Automata Outlook

Outlook

▶ order ideals as a means to obtain complexity bounds for
applications of Hilbert’s Basis Theorem
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▶ for Buchberger’s algorithm, all we have are Ackermannian
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