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Hilbert’s Basis Theorem
> involved e.g., in computing Zariski closures

order ideals
> over well-quasi-orders
> allows to derive complexity statements

connection
> illustration on polynomial automata

> invertible polynomial automata and the
dimension of ideals
» what about Buchberger’s algorithm?
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MOTIVATING EXAMPLE

A loop with polynomial
updates

x = 1/3;
y 1= -5;
while (=) {
choose
(x,y) = (2y,y*x);
or
(x,y) = (1, 3x);
}

return (x-1)*(y+1);
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MOTIVATING EXAMPLE

A loop with polynomial ... seen as a polynomial
updates automaton
x := 1/3;
y 1= -5;
while (%) { a:(2y,xy)
choose
(x,y) = (2y,y*x); (1/3,-5) — (x—1)(y+1)
or
} (X:Y) = (11 3X); b2(1,3X)

return (x-1)*(y+1);
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PoLYNOMIAL AUTOMATA

A polynomial automaton A
of dimension d

> finite alphabet &
> initial configuration o € Q4 a:(2y,xy)

» polynomial updates (1/3,—5)— (x=1)(y+1)
(Pa)acz: Q% — Q1

» polynomial output

y: Q' —Q

b:(1,3x)
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ZERONESS OF POLYNOMIAL AUTOMATA

SEMANTICS
> Pw: Q41— Qdforwe *
def def

pe = identity Paw =Pw O Pa

> [AlwW) = v (pw(a))
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SEMANTICS
> Pw: Q41— Qdforwe *

pe £ identity Paw = Pw © Pa
> [Al(w) Zvy(pw(a))
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ZERONESS OF POLYNOMIAL AUTOMATA

ZERONESS

input polynomial automaton A

question does [A](w) =0 for allw € £*?

THEOREM (BENEDIKT, DuUFF, SHARAD, AND WORRELL, 2017)

The zeroness problem for polynomial automata is
ACKERMANN-complete.

COROLLARY (BENEDIKT, DuUFF, SHARAD, AND WORRELL, 2017)

The equivalence problem for polynomial automata is
ACKERMANN-complete.
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ANALYSING POLYNOMIAL AUTOMATA
(Benedikt et al., 2017)

Define polynomial ideals Jo & J1 & --- by
Je Z (yopw|we L9
Inductively,
Jo=(v)
Jxr1 =(fopalf€JraecZuU{e})
By Hilbert’s Basis Theorem, this stabilises to
Jo=(yopwlweL")

and we can detect stabilisation using reduced Grébner
bases for the Ji.
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ANALYSING POLYNOMIAL AUTOMATA
(Benedikt et al., 2017)

Define polynomial ideals Jo & J1 & --- by
Je Z (yopw|we L9
Inductively,
Jo=(v)
Jxr1 =(fopalf€JraecZuU{e})
By Hilbert’s Basis Theorem, this stabilises to
Jo=(yopwlweL")

and we can detect stabilisation using reduced Grébner
bases for the Ji.

ProPoOSITION
Benedikt et al., 2017 [A](w) = O for allw € X* iff x € V(],).
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» thus zeroness is decidable
» what about complexity upper bounds?

» turn to order ideals
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DescENDING CHAINS

over a wqo

» well-quasi-order (X, <):
every descending chain of
downwards-closed sets is
finite

o o
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» (IN,C) is a wgo by Dickson'’s Do 2 D; 2 D>
Lemma
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over a wqo

» well-quasi-order (X, <):
every descending chain of
downwards-closed sets is
finite

o 0
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» (IN,C) is a wqgo by Dickson’s Do2D; 2 D52 Ds
Lemma
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» (IN,C) is a wqgo by Dickson’s
Lemma
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unions of ideals

> ideals are the irreducible
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ORDER IDEALS

» downwards-closed sets over
a wgo have a unique
decomposition as finite
unions of ideals

> ideals are the irreducible
downwards-closed sets:
ICD7UDy impliesI C D;
orl g D2

(w,1)

o

o

D3 = {(114)1 (3; 3)1 (512)1 (w/ 1)}
» over N4: ideals represented
as vectors in (N U{w})4
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ORDER IDEALS

» downwards-closed sets over
a wgo have a unique
decomposition as finite
unions of ideals

> ideals are the irreducible
downwards-closed sets:
ICD7UDy impliesI C D;
orl g D2

={(1,4),(3,3),(5,2),(7,1),(w,0)}
» over N4: ideals represented
as vectors in (N U{w})4
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ORDER IDEALS

» downwards-closed sets over
a wgo have a unique
decomposition as finite
unions of ideals

> ideals are the irreducible
downwards-closed sets:
ICD7UDy impliesI C D;
orl g D2

D5 = {(114)f (313)1 (512)1 (71 1)/ (910)}
» over N4: ideals represented
as vectors in (N U{w})4



Order Ideals
00800

DIMENSION OF IDEALS ovER IN4

For an ideal I seen as a vector in (N U{w})4

wH=E{1<i<dlI{) =w)}
dimI & |w (1)

ExamMPLE
Ford=3, w((2,10,w)) ={3}and dim(2,10,w) = 1.
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MONOTONICITY

[Lazi¢ and S., 2021]

> at every step k, since
Dy 2 Dy41, there must exist
an ideal in Dy but not in
Dyt1: we say it is proper at
step k

» the chain is w- monotone if,
VIks1 proper atstepk+1,
dIy proper at step k s.t.

wW(ls1) € w(Iy)
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MONOTONICITY

[Novikov and Yakovenko, 1999; Benedikt et al., 2017]

> at every step k, since
Dy 2 Dg41, there must exist
an ideal in Dy but not in
Dy.1: we say it is proper at
step k

> the chain is strongly
monotone if, VIy .1 proper at
step k+ 1, dIy proper at
step k s.t.

dim Ik+ 1 < dimIk
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The length can be arbitrary (also for strongly monotone
chains): for all n,
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chains): for all n,
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THE LENGTH OF DESCENDING CHAINS

Issue
The length can be arbitrary (also for strongly monotone
chains): for all n,

{(0,w)}2{(0,n)}2{(0,n—-1)}2---2{(0,1)} 2{(0,0)}

CoNTROL

Forg: N —Nandng € N: a
|D|d£fmax|1| Chall’] DOQD]_;-.. |S
1eb (g,no)-controlled if, Vk,

II| & max I(i) K
iew(]) Dyl < g*(no)
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THE LENGTH OF DESCENDING CHAINS

CoNTROL
Forg:IN—Nandng€IN: a

ID| & max|I| chainDg2 D12 is
1€ (g,no)-controlled if, Yk,

[Tl & max I(1)
iew(I) D] < g*(no)

EXAMPLE (VECTOR ADDITION SYSTEMS)
The descending chains in the dual backward coverability
algorithm are w-monotone and (g,ng)-controlled by

gx)¥x+n noEn
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THE LENGTH OF DESCENDING CHAINS

ExAMPLE (VECTOR ADDITION SYSTEMS)

The descending chains in the dual backward coverability
algorithm are w-monotone and (g,ng)-controlled by

gix)Ex+n noEn

THEOREM (LENGTH FUNCTION THEOREM (LAzI¢ AND S., 2021))

(g,n)-controlled descending chains over (N4,C) for
g primitive-recursive are of length bounded by

Fora)(n)

in the fast-growing hierarchy.
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THE LENGTH OF DESCENDING CHAINS

THEOREM (LENGTH FUNCTION THEOREM (LAzI¢ AND S., 2021))

(g,n)-controlled descending chains over (N4,C) for
g primitive-recursive are of length bounded by

Fo(a)(n)
in the fast-growing hierarchy.

THEOREM (LENGTH FUNCTION THEOREM (S. AND ScHUTZE, 2024))

Strongly monotone (g,n)-controlled descending chains
over (N¢,C) for g(x) ! x + 1 are of length bounded by

o(d)
le °
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THE LENGTH OF DESCENDING CHAINS

THEOREM (LENGTH FUNCTION THEOREM (S. AND ScHiiTzE, 2024))

Strongly monotone (g,n)-controlled descending chains
over (IN4,C) for g(x) & x + n are of length bounded by

20((1)

REMARK ((S. AND ScHiTZE, 2024))

Strongly monotone (g,n)-controlled descending chains
over (N4,C0) for g(x) £ x - n are of length bounded by

(dn)d 11 d,

i.e., a tower of exponentials of heightd + 1.
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SETUP

» work over an algebraically closed field A
» multivariate polynomials over x =x1,...,%X4
» monomial x;” . -xgd written as x* for u =uq,...,ug € N¢

» monomial ordering < over N4 that is graded:
Zl<1<du < Z1<1<du (1) impliesu <u’
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multideg(f) & max{u €N |cy 20} LM(f) & xmultideg(f)

> for ] C Alx]

multideg(]) & {multideg(f) | f € J} LM(]J) E{LM(f) | fe ]}
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LEADING MONOMIALS AND MULTIDEGREES

DEFINITION
Associate to any polynomial ideal ] C A[x] its
downwards-closed set

D & N4 \ multideg(])

REMARK
For a Grébner basis G of |, (LM(G)) = (LM(])), thus
equivalently

D & N4\ multideg(LM(Grobner(])))
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GENERAL CoMPLEXITY UPPER BoOuUND

Benedikt et al., 2017
THEOREM (BENEDIKT, DuUFF, SHARAD, AND WORRELL, 2017)
The zeroness problem for polynomial automata is in
ACKERMANN.

» JoCJ1C---CJryieldsDg2 D1 2--- 2D, where
Dy & N9\ multideg(Jy)

» Dubé (1990): degree bound of 2(t+ 1)2 on Grébner
bases of (f,...,fm) where the f; have total degree <t

» Benedikt et al. (2017, Prop. 4) the chain is
(g,n)-controlled for n & 2(t + 1)2d and g(x) & x-n

> apply the length function theorem for descending chains:
g is primitive-recursive, thus Fy4) upper bound
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» complexity upper bound from the length function
theorem on descending chains over N4

> can we exploit the improved bounds for strongly
monotone descending chains?



Invertible Polynomial Automata
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DIMENSION OF AN ALGEBRAIC VARIETY

» multiple equivalent definitions

> over an algebraically closed field with a graded
monomial ordering, for a variety V C A4

dimV ¢ max{dimI|I orderideal s.t. I C lNd\multideg(I(V))}
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MoNoOTONICITY REDUX
Consider a descending chain Vg 2 V; 2 --- of varieties.
» each Vj is a finite union of incomparable irreducible
varieties

» an irreducible variety at step k is proper if it appears in Vj
but not Vi1

» Vo2 Vi 2 is strongly monotone if, VW) proper at
step k+ 1, Wy proper at step k s.t. dimWj 1 < dim Wy

PROPOSITION

Let Vo 2 V1 2 --- be a descending chain of varieties and
Do 2D 2 --- the corresponding descending chain of
downwards-closed sets Dy & IN% \ multideg(I(Vy)). Then
one is strongly monotone iff the other is strongly
monotone.
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INVERTIBLE POLYNOMIAL AUTOMATA

Benedikt et al., 2017

» for each a € 2, pq has arational inverse qq: Ad— Ad
> consequence: each pq and (q preserves the dimension

» further consequence: Vg DV D --- where Vi @ V(Jy) is
strongly monotone (Benedikt et al., 2017, Prop. 6)
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THEOREM (BENEDIKT, DuUFF, SHARAD, AND WORRELL, 2017)

The zeroness problem for invertible polynomial automata
is in TOWER.

» consider VgD V; D---and Dg D Djg O --- where
Vk d:dVUk) and

Dy & N4\ multideg(I(Vy)) = N4\ multideg(+/Jy)

2
> Laplagne (2006): degree bound of 2(t + 1)20(d " on

Grobner bases of 1/(f1,...,fm) where the f; have total
degree <t

Zc-dz

> the chainis (g,n)-controlled for n & 2(t + 1) and

g(x) ¥ x-n for somec
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CoMPLEXITY UPPER BOUND

» consider VgD V; D---and Dg D Dg D --- where
Vk défV(Ik) and

Dy & N4\ multideg(I(Vy)) = N\ multideg(+/Ji)
2
» Laplagne (2006): degree bound of 2(t+ 1)20(d " on
Grobner bases of /(f1,...,fm) where the f; have total
degree <t

C- 2
> the chain is (g,n)-controlled for n & 2(t +1)2°“" and
def

g(x) = x-nfor somec

> apply the length function theorem for strongly monotone
descending chains: a tower of exponentials of height
d+ 1 as upper bound
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OuTLOOK
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applications of Hilbert's Basis Theorem

» what about Groébner basis computations, e.g., by
Buchberger’s algorithm or F4/F5? They essentially work
by computing an ascending chain of polynomial ideals
(LM(Go)) € (LM(Gy)) € -+

> they can be computed in exponential space (Kiihnle and Mayr,
1996), but this relies on the degree bounds of Dubé (1990)

> for Buchberger’s algorithm, all we have are Ackermannian
upper bounds (Dubé, Mishra, and Yap, 1995)!



	Polynomial Ideals
	Order Ideals
	Connections
	Invertible Polynomial Automata
	Outlook

