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T x= (xlw'naxn)ay: ('yl.‘...ﬂyt)
@ fiand g;in Q[x, )]

@& d = max. degree of the input
polynomials

One-block QE is equivalent to
compute a description of
some projection

The projection of
a semi-algebraic set

is semi-algebraic (Tarski)
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Cylindrical algebraic decomposition

dO(zTH—t)

Unquantified formula < [E¥] CAD is at the foundations of
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What we want to do

There exists an algorithm which performs

one block QE using s("t1)(+1) gO) arithmetic operations

and outputs polynomials of degree bounded by d°%).

@ What is hidden by the Landau notation?

@ How to better represent semi-algebraic sets?
@ Formulas should be easy to evaluate!

@ We like determinantal representations

@ Can we perform faster in practice than
the best CAD implementations?
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Main result

* x=(x1,...,%),
@ fiand g in Q[x, y]
@ d = max. degree of the input

polynomials

There exists a randomized algorithm that performs (weak) one block QE using
o <8t93t(t+t9)> arithmetic operations with 2 = ndf(d — 1)" #*! (pfl)
and with output polynomials of degree bounded by &, for generic entries.

output polynomials are given as minors of some matrices

preliminary implementation — solves problems previously unreachable
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First ingredients (I)

Sample points 0-dimensional YR g1
Algebraic algorithms system root counting
S./Schost’03

Up to a generic linear change of coordinates

the projection on the (xi, . . ., x;)-subspace
of Vg is closed.

degree bound d*(d — 1)" =7 (";—11)

determinantal ideals ~ nice properties




First ingredients (II)

Sample points 0-dimensional BV [AVETETS
Algebraic algorithms system root counting

~ Q(y)




First ingredients (II)

Sample points 0-dimensional YR g1
Algebraic algorithms system root counting

~ Q(y)

Parametrized systems of critical points

zero-dimenional + determinantal structure

With parameters, we need a specialization theorem




First ingredients (II)

Sample points 0-dimensional YR g1
Algebraic algorithms system root counting

~ Q(y)

Parametrized systems of critical points

zero-dimenional + determinantal structure

With parameters, we need a specialization theorem

One generic linear change of variables is ok

for almost all parameter’s values.
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Algebraic algorithms system root counting
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Parametrized system with finitely many solutions in Q( )

Let I be the ideal generated by these equations

@ The quotient ring A = M allows

to compute "modulo” the solutions Grobner bases
QW[+
1

@ The quotient ring A = is a
q & A confluent rewriting system

finite dimensional vector space

Let B = {b,..., bs} be a basis of A
e fE€EAg = fxgehg
Ay - (f, &) € Al — Tr(uy.g) ~» matrix representation Hgp

@ the rank of 7y is the number of complex roots

@ the signature of /g is the number of real roots
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Sample points 0-dimensional Y AVETEETE
npu B muias
Algebraic algorithms system root counting

~ Q(y)
] ] e Sample points in
Hermite matrix % computed over K = Q( ) . .
semi-algebraic sets

@ Specialization property for J and Hg A
@ When I is generated by generic polynomials,

N .

— Syt e deg(HHZ[l’dj]) g c}eg(b,) + deg(by) Our ideals are
ilber .ser.les + gr.a ed orderings NOT generic
all principal minors have degree n(d — 1)d"

The combinatorics of determinantal ideals

Berthomieu/Bostan/Ferguson/S’21

1 \? _o AP - . .
Hilbert series (E?;ol z') (Z?:oz zl) Zf:ol ("—Pi—l-i-') Z(d=1)i
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Practical results

maple, RAGLIB, msolve

t n s D ‘ MAPLE[QE] ‘ MATHEMATICA[QE] ‘ MAT+DET sP total DEG
2 3 2 2 > 10d > 10d 1s 6s 7s 24
2 4 2 2 > 10d > 10d 9s 2m 2m 40
2 5 2 2 > 10d > 10d 2m 23m 25m 56
2 6 2 2 > 10d > 10d 20m 6.5h 7h 72
3 3 2 2 > 10d > 10d 6s 3m 3m 24
3 4 2 2 > 10d > 10d 2m 43m 45m 40
3 5 2 2 > 10d > 10d 1h 14h 15h 56
Random dense systems

t n s D ‘ MAPLE ‘ MATHEMATICA ‘ MAT+DET SP total DEG

3 4 2 2 > 10d > 10d 2m. 10 m. 12 m 34

3 5 2 2 > 10d > 10d 2m. 10 m. 12 m 32

4 3 2 2 > 10d > 10d 20 s. 20 m. 21 m 22

4 4 2 2 > 10d > 10d 15s. 18 m. 19 m 20

Random sparse systems

MAT +DET: compute Hermite matrices + minors

sp: compute sample points

DEG: highest degree in outputs
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v new complexity results: probabilistic algorithm, genericity assumptions

v practical performances that reflect the complexity gains

v solves applications that were previously out of reach

v generalization to the case involving inequalities

X how to compute faster sample points in semi-algebraic sets defined by
determinantal representations?

X how to remove the genericity assumptions?

X how to remove probabilistic aspects?



