Modern algorithms for one-block

quantifier elimination over the reals

Mohab Safey El Din b 7“ 5 ‘7“7 :

Joint works with Louis Gaillard and Huu Phuoc Le

One block quantifier elimination

T x= (xlw'naxn)ay: ('yl.‘...ﬂy,)
@ fiand g;in Q[x,)]

@& d = max. degree of the input
polynomials

One block quantifier elimination

IxeR x*+bx+c=0

¥ —4c>0

with

T x= (xlw'naxn)ay: ('yl.‘...ﬂyt)
@ fiand g;in Q[x,)]

@& d = max. degree of the input
polynomials

One block quantifier elimination

T x= (xlw'“axn)ay: ('yl.‘...ﬂy,)
@ fiand g;in Q[x,)]

UL @ d = max. degree of the input

polynomials

IxeR ax’+bx+c=0

b* —4ac>0Aa+#0
%
a=0Ab#0
%
a=0Ab=0Ac=0

One block quantifier elimination

T x= (xlw'“axn)ay: ('yl.‘...ﬂyt)
@ fiand g;in Q[x,)]

UL @ d = max. degree of the input

polynomials

IxeR ax®+bx+c=0 v One-block QE is equivalent to
compute a description of
some projection

b* —4ac>0Aa+#0

V
a=0Ab#0
V
a=0Ab=0Ac=0

One block quantifier elimination

with

IxeR ax’+bx+c=0

b* —4ac>0Aa+#0

V
a=0Ab#0
V
a=0Ab=0Ac=0

T x= (xlw'naxn)ay: ('yl.‘...ﬂyt)
@ fiand g;in Q[x,)]

@& d = max. degree of the input
polynomials

One-block QE is equivalent to
compute a description of
some projection

The projection of
a semi-algebraic set

is semi-algebraic (Tarski)

State of the art

n-variate quantified formula

Univariate root counting e ¢ — 42

n — l-variate quantified formula

n — 2-variate quantified formula

Unquantified formula §

State of the art

n-variate quantified formula

Univariate root counting e ¢ — 42

n — 1-variate quantified formula

n — 2-variate quantified formula

Cylindrical algebraic decomposition

dO(zTH—t)

Unquantified formula A

State of the art

n-variate quantified formula

Univariate root counting e ¢ — 42

n — 1-variate quantified formula

n — 2-variate quantified formula

Cylindrical algebraic decomposition

dO(zTH—t)

Unquantified formula < [E¥] CAD is at the foundations of

State of the art - Modern era starts

* x = (X1, %),

@ fand g; in Q[x, 1]

@& d = max. degree of the input

polynomials

State of the art - Modern era starts

* x=(x1,...,%),

@ fand g; in Q[x, 1]

@& J = max. degree of the input
polynomials

There exists an algorithm which performs
one block QE using s"t1D(+1) gO(") arithmetic operations

and outputs polynomials of degree bounded by d°("),

Basu/Pollack/Roy

State of the art - Modern era starts

* x=(x1,..., %),
@ fand g; in Q[x, 1]
@& J = max. degree of the input

polynomials

There exists an algorithm which performs
one block QE using s"t1D(+1) gO(") arithmetic operations
and outputs polynomials of degree bounded by d°("),

Basu/Pollack/Roy
Sample points Multivariate

0-dimensional
Algebraic algorithms system root counting

~ Q(y)

Input

What we want to do

There exists an algorithm which performs

one block QE using s("t1)(+1) gO(") arithmetic operations

and outputs polynomials of degree bounded by d°("),

What we want to do

There exists an algorithm which performs

one block QE using s("t1)(+1) gO) arithmetic operations

and outputs polynomials of degree bounded by d°%).

@ What is hidden by the Landau notation?

What we want to do

There exists an algorithm which performs

one block QE using s("t1)(+1) gO) arithmetic operations

and outputs polynomials of degree bounded by d°%).

@ What is hidden by the Landau notation?

@ How to better represent semi-algebraic sets?
@ Formulas should be easy to evaluate!

@ We like determinantal representations

What we want to do

There exists an algorithm which performs

one block QE using s("t1)(+1) gO) arithmetic operations

and outputs polynomials of degree bounded by d°%).

@ What is hidden by the Landau notation?

@ How to better represent semi-algebraic sets?
@ Formulas should be easy to evaluate!

@ We like determinantal representations

@ Can we perform faster in practice than
the best CAD implementations?

Main result

® x = (x1,...,%),
@ f,and g; in Q[x, 1]

g @ d = max. degree of the input

polynomials

Main result

® x = (x1,...,%),
@ f,and g; in Q[x, 1]

g @ d = max. degree of the input

polynomials

Main result

® x = (x1,...,%),
@ f,and g; in Q[x, 1]

g @ d = max. degree of the input

polynomials

There exists a randomized algorithm that performs (weak) one block QE using

o (8’9“(”;%) arithmetic operations with 2 = ndf(d — 1)" #*! (pfl)

and with output polynomials of degree bounded by &, for generic entries.

Main result

* x=(x1,...,%),
@ fiand g in Q[x, y]
@ d = max. degree of the input

polynomials

There exists a randomized algorithm that performs (weak) one block QE using
o <8t93t(t+t9)> arithmetic operations with 2 = ndf(d — 1)" #*! (pfl)
and with output polynomials of degree bounded by &, for generic entries.

output polynomials are given as minors of some matrices

preliminary implementation — solves problems previously unreachable

First ingredients (I)

Sample points 0-dimensional YT [AVETEETE
Algebraic algorithms system root counting

First ingredients (I)

Sample points 0-dimensional YR g1
Algebraic algorithms system root counting

First ingredients (I)

Sample points 0-dimensional YT [AVETEETE
Algebraic algorithms system root counting

First ingredients (I)

Sample points 0-dimensional Y EETE G
Algebraic algorithms system root counting
S./Schost’03

Up to a generic linear change of coordinates

the projection on the (xi, . . ., x;)-subspace
of Vg is closed.

First ingredients (I)

Sample points 0-dimensional YR g1
Algebraic algorithms system root counting
S./Schost’03

Up to a generic linear change of coordinates

the projection on the (xi, . . ., x;)-subspace
of Vg is closed.

degree bound d*(d — 1)" =7 (";—11)

determinantal ideals ~ nice properties

First ingredients (II)

Sample points 0-dimensional BV [AVETETS
Algebraic algorithms system root counting

~ Q(y)

First ingredients (II)

Sample points 0-dimensional YR g1
Algebraic algorithms system root counting

~ Q(y)

Parametrized systems of critical points

zero-dimenional + determinantal structure

With parameters, we need a specialization theorem

First ingredients (II)

Sample points 0-dimensional YR g1
Algebraic algorithms system root counting

~ Q(y)

Parametrized systems of critical points

zero-dimenional + determinantal structure

With parameters, we need a specialization theorem

One generic linear change of variables is ok

for almost all parameter’s values.

Second ingredients

m Sample points 0-dimensional YRV SELS m
Algebraic algorithms system root counting

~ Q(y)

Second ingredients

m Sample points 0-dimensional YRV SELS m
Algebraic algorithms system root counting
~ Q(y)

Parametrized system with finitely many solutions in Q()

Let I be the ideal generated by these equations

@ The quotient ring A = M allows

to compute "modulo” the solutions Grobner bases
QW[+
1

@ The quotient ring A = is a
q & A confluent rewriting system

finite dimensional vector space

Let B = {by, ..., bs} be a basis of A

Second ingredients

m Sample points 0-dimensional YRV SELS m
Algebraic algorithms system root counting
~ Q(y)

Parametrized system with finitely many solutions in Q()

Let I be the ideal generated by these equations

@ The quotient ring A = M allows

to compute "modulo” the solutions Grobner bases
QW[+
1

@ The quotient ring A = is a
q & A confluent rewriting system

finite dimensional vector space

Let B = {b,..., bs} be a basis of A
e fE€EAg = fxgehg
Ay - (f, &) € Al — Tr(uy.g) ~» matrix representation Hgp

@ the rank of 7y is the number of complex roots

@ the signature of /g is the number of real roots

Second ingredients

Sample points 0-dimensional
Algebraic algorithms system

~ Q(y)

Multivariate

root counting

Hermite matrix %% computed over K =

()

Second ingredients

Multivariate m

Sample points 0-dimensional
Algebraic algorithms system

root counting

~ Q(y)
Hermite matrix 7% computed over K = Q()

Sample points in
semi-algebraic sets

Second ingredients

Sample points 0-dimensional Y AVETEETE
npu B muias
Algebraic algorithms system root counting

~ Q(y)

]] =N Sample points in
Hermite matrix % computed over K = Q() et e

@ Specialization property for J and Hg
@ When I is generated by generic polynomials,

deg(Hkl[i, j]) < deg(b;) + deg(b;)

@ Hilbert series + graded orderings

all principal minors have degree n(d — 1)d"

Second ingredients

Sample points 0-dimensional ivari
ple p Multlvarla.lte m
Algebraic algorithms system root counting
~ Q()

]] s Sample points in
Hermite matrix % computed over K = Q() et e

@ Specialization property for J and Hg

@ When I is generated by generic polynomials, A
deg(Hg[i, j]) < deg(b:) + deg(b;)

B ded orderi Our ideals are
ilber 'ser.les + gr.a ed orderings NOT generic
all principal minors have degree n(d — 1)d"

Second ingredients

Sample points 0-dimensional Y AVETEETE
npu B muias
Algebraic algorithms system root counting

~ Q(y)
]] e Sample points in
Hermite matrix % computed over K = Q() . .
semi-algebraic sets

@ Specialization property for J and Hg A
@ When I is generated by generic polynomials,

N .

— Syt e deg(HHZ[l’dj]) g c}eg(b,) + deg(by) Our ideals are
ilber .ser.les + gr.a ed orderings NOT generic
all principal minors have degree n(d — 1)d"

The combinatorics of determinantal ideals

Berthomieu/Bostan/Ferguson/S’21

1 \? _o AP - . .
Hilbert series (E?;ol z') (Z?:oz zl) Zf:ol ("—Pi—l-i-') Z(d=1)i

Practical results maple, RAGLIB, msolve

t n s D ‘ MAPLE[QE] ‘ MATHEMATICA[QE] ‘ MAT+DET SP total DEG
2 3 2 2 > 10d > 10d
2 4 2 2 > 10d > 10d
2 5 2 2 > 10d > 10d
2 6 2 2 > 10d > 10d
3 3 2 2 > 10d > 10d
3 4 2 2 > 10d > 10d
3 5 2 2 > 10d > 10d

Random dense systems

MAT +DET: compute Hermite matrices + minors DEG: highest degree in outputs
sp: compute sample points

Practical results maple, RAGLIB, msolve

t n s D ‘ MAPLE[QE] ‘ MATHEMATICA[QE] ‘ MAT+DET sP total DEG
2 3 2 2 > 10d > 10d 1s 6s 7s 24
2 4 2 2 > 10d > 10d 9s 2m 2m 40
2 5 2 2 > 10d > 10d 2m 23m 25m 56
2 6 2 2 > 10d > 10d 20m 6.5h 7h 72
3 3 2 2 > 10d > 10d 6s 3m 3m 24
3 4 2 2 > 10d > 10d 2m 43m 45m 40
3 5 2 2 > 10d > 10d 1h 14h 15h 56

Random dense systems

MAT +DET: compute Hermite matrices + minors DEG: highest degree in outputs
sp: compute sample points

Practical results

maple, RAGLIB, msolve

t n s D ‘ MAPLE[QE] ‘ MATHEMATICA[QE] ‘ MAT+DET sP total DEG
2 3 2 2 > 10d > 10d 1s 6s 7s 24
2 4 2 2 > 10d > 10d 9s 2m 2m 40
2 5 2 2 > 10d > 10d 2m 23m 25m 56
2 6 2 2 > 10d > 10d 20m 6.5h 7h 72
3 3 2 2 > 10d > 10d 6s 3m 3m 24
3 4 2 2 > 10d > 10d 2m 43m 45m 40
3 5 2 2 > 10d > 10d 1h 14h 15h 56
Random dense systems

t n s D ‘ MAPLE ‘ MATHEMATICA ‘ MAT+DET SP total DEG

3 4 2 2 > 10d > 10d 2m. 10 m. 12 m 34

3 5 2 2 > 10d > 10d 2m. 10 m. 12 m 32

4 3 2 2 > 10d > 10d 20 s. 20 m. 21 m 22

4 4 2 2 > 10d > 10d 15s. 18 m. 19 m 20

Random sparse systems

MAT +DET: compute Hermite matrices + minors

sp: compute sample points

DEG: highest degree in outputs

Conclusions and perspectives

v new complexity results: probabilistic algorithm, genericity assumptions

v practical performances that reflect the complexity gains

v solves applications that were previously out of reach

v generalization to the case involving inequalities

Conclusions and perspectives

v new complexity results: probabilistic algorithm, genericity assumptions

v practical performances that reflect the complexity gains

v solves applications that were previously out of reach

v generalization to the case involving inequalities

X how to compute faster sample points in semi-algebraic sets defined by
determinantal representations?

X how to remove the genericity assumptions?

X how to remove probabilistic aspects?

