Modern algorithms for one-block quantifier elimination over the reals

Joint works with Louis Gaillard and Huu Phuoc Le

$$\exists \mathbf{x} \in \mathbb{R}^n \quad f_1 = \cdots = f_p = 0$$

 $g_1 > 0, \dots, g_s > 0$
 $\begin{pmatrix} \uparrow \\ \Phi(\mathbf{y}) = \Phi_1(\mathbf{y}) \lor \cdots \lor \Phi_\ell(\mathbf{y}) \end{cases}$

with

•
$$\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_t)$$

• f_i and g_j in $\mathbb{Q}[\mathbf{x}, \mathbf{y}]$
• $d = \max$. degree of the input polynomials

$$\exists \mathbf{x} \in \mathbb{R}^n \quad f_1 = \cdots = f_p = 0$$

 $g_1 > 0, \dots, g_s > 0$
 $\begin{pmatrix} \uparrow \\ \Phi(\mathbf{y}) = \Phi_1(\mathbf{y}) \lor \cdots \lor \Phi_\ell(\mathbf{y}) \end{cases}$

with

•
$$\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_t)$$

• f_i and g_j in $\mathbb{Q}[\mathbf{x}, \mathbf{y}]$
• $d = \max$. degree of the input polynomials

$$\exists x \in \mathbb{R} \quad x^2 + bx + c = 0$$
$$\Leftrightarrow \qquad b^2 - 4c \ge 0$$

$$\exists \boldsymbol{x} \in \mathbb{R}^n \quad f_1 = \dots = f_p = 0 \\ g_1 > 0, \dots, g_s > 0 \\ \uparrow \\ \Phi(\boldsymbol{y}) = \Phi_1(\boldsymbol{y}) \lor \dots \lor \Phi_\ell(\boldsymbol{y})$$

•
$$\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_t)$$

• f_i and g_j in $\mathbb{Q}[\mathbf{x}, \mathbf{y}]$
• $d = \max$. degree of the input polynomials

with

$$f_i$$
 and g_j in $\mathbb{Q}[\mathbf{x}, \mathbf{y}]$
 $d = \max$. degree of the input
polynomials

• $\mathbf{x} = (x_1, \ldots, x_n), \mathbf{y} = (y_1, \ldots, y_t)$

One-block QE is equivalent to compute a description of some projection

$$\exists \mathbf{x} \in \mathbb{R}^n \quad f_1 = \cdots = f_p = 0$$

 $g_1 > 0, \dots, g_s > 0$
 $(\mathbf{y}) = \Phi_1(\mathbf{y}) \lor \cdots \lor \Phi_\ell(\mathbf{y})$

with

• $\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_t)$ • f_i and g_j in $\mathbb{Q}[\mathbf{x}, \mathbf{y}]$ • $d = \max$. degree of the input polynomials

One-block QE is equivalent to compute a description of some projection

$$\begin{array}{c} \downarrow \\ b^2 - 4ac \ge 0 \land a \ne 0 \\ \lor \\ a = 0 \land b \ne 0 \\ \lor \\ a = 0 \land b = 0 \land c = 0 \end{array}$$

 $\exists x \in \mathbb{R}$ $ax^2 + bx + c = 0$

The projection of a semi-algebraic set is **semi-algebraic (Tarski)**

State of the art

n-1-variate quantified formula

n-2-variate quantified formula

Univariate root counting $rac{d}{d} \rightarrow d^2$

Unquantified formula

State of the art

Univariate root counting $rac{d}{d} \rightarrow d^2$

Cylindrical algebraic decomposition $dO(2^{n+t})$

State of the art

Univariate root counting $rac{d}{d} \rightarrow d^2$

Cylindrical algebraic decomposition $d^{O(2^{n+t})}$

State of the art - Modern era starts

with

•
$$\mathbf{x} = (x_1, \dots, x_n), \ \mathbf{y} = (y_1, \dots, y_t)$$

• $f_i \text{ and } g_j \text{ in } \mathbb{Q}[\mathbf{x}, \mathbf{y}]$
• $d = \max$. degree of the input polynomials

State of the art – Modern era starts

$$\exists \boldsymbol{x} \in \mathbb{R}^n \quad f_1 = \dots = f_p = 0 \\ g_1 > 0, \dots, g_s > 0 \\ & \uparrow \\ \Phi(\boldsymbol{y}) = \Phi_1(\boldsymbol{y}) \lor \dots \lor \Phi_\ell(\boldsymbol{y})$$

with

•
$$\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_t)$$

• f_i and g_j in $\mathbb{Q}[\mathbf{x}, \mathbf{y}]$
• $d = \max$. degree of the input polynomials

There exists an algorithm which performs one block QE using $s^{(n+1)(t+1)} d^{O(nt)}$ arithmetic operations and outputs polynomials of degree bounded by $d^{O(n)}$.

State of the art - Modern era starts

•
$$\mathbf{x} = (x_1, \dots, x_n), \ \mathbf{y} = (y_1, \dots, y_t)$$

• $f_i \text{ and } g_j \text{ in } \mathbb{Q}[\mathbf{x}, \mathbf{y}]$
• $d = \max$. degree of the input polynomials

There exists an algorithm which performs one block QE using $s^{(n+1)(t+1)} d^{O(nt)}$ arithmetic operations and outputs polynomials of degree bounded by $d^{O(n)}$. Basu/Pollack/Roy

with

$$\begin{array}{c|c} \text{Sample points} & & & \\ \hline \text{Input} & & \\ \hline \text{Algebraic algorithms} & & & \\ &$$

There exists an algorithm which performs one block QE using $s^{(n+1)(t+1)} d^{O(nt)}$ arithmetic operations and outputs polynomials of degree bounded by $d^{O(n)}$.

There exists an algorithm which performs one block QE using $s^{(n+1)(t+1)} d^{O(nt)}$ arithmetic operations and outputs polynomials of degree bounded by $d^{O(n)}$.

There exists an algorithm which performs one block QE using $s^{(n+1)(t+1)} d^{O(nt)}$ arithmetic operations and outputs polynomials of degree bounded by $d^{O(n)}$.

(?) What is hidden by the Landau notation? 💪

How to better represent semi-algebraic sets?
 Formulas should be easy to evaluate!
 We like determinantal representations

There exists an algorithm which performs one block QE using $s^{(n+1)(t+1)} d^{O(nt)}$ arithmetic operations and outputs polynomials of degree bounded by $d^{O(n)}$.

?)What is hidden by the Landau notation? 💪

How to better represent semi-algebraic sets?
Formulas should be easy to evaluate!
We like determinantal representations

Can we perform faster in practice than the best CAD implementations?

with

•
$$\mathbf{x} = (x_1, \dots, x_n), \ \mathbf{y} = (y_1, \dots, y_t)$$

• $f_i \text{ and } g_j \text{ in } \mathbb{Q}[\mathbf{x}, \mathbf{y}]$
• $d = \max$. degree of the input polynomials

$$\exists \mathbf{x} \in \mathbb{R}^n \quad f_1 = \dots = f_p = 0 \\ g_1 > 0, \dots, g_s > 0 \\ \uparrow \\ \Phi(\mathbf{y}) = \Phi_1(\mathbf{y}) \lor \dots \lor \Phi_\ell(\mathbf{y})$$
 with with
$$\mathbf{x} = (x_1, \dots, x_n), \mathbf{y} = (y_1, \dots, y_t) \\ \mathbf{x} = f_i \text{ and } g_j \text{ in } \mathbb{Q}[\mathbf{x}, \mathbf{y}] \\ \mathbf{x} = d = \text{max. degree of the input polynomials}$$

regularity / transversality assumptions on f₁,..., f_p
output defines a Zariski dense subset of the projection of V_R(f₁,..., f_p)

 regularity / transversality assumptions on f₁,..., f_p
 output defines a Zariski dense subset of the projection of V_R(f₁,..., f_p)

There exists a **randomized** algorithm that performs (weak) one block QE using $O\left(8^t \mathscr{D}^{3t}\binom{t+\mathscr{D}}{t}\right)$ arithmetic operations with $\mathscr{D} = nd^p(d-1)^{n-p+1}\binom{n}{p-1}$ and with output polynomials of degree bounded by \mathscr{D} , for generic entries.

• regularity / transversality assumptions on f_1, \ldots, f_p • output defines a Zariski dense subset of the projection of $V_{\mathbb{R}}(f_1, \ldots, f_p)$

There exists a **randomized** algorithm that performs (weak) one block QE using $O\left(8^t \mathscr{D}^{3t}\binom{t+\mathscr{D}}{t}\right)$ arithmetic operations with $\mathscr{D} = nd^p(d-1)^{n-p+1}\binom{n}{p-1}$ and with output polynomials of degree bounded by \mathscr{D} , for generic entries.

Let $\mathscr{B} = \overline{\{b_1,\ldots,b_\delta\}}$ be a basis of \mathbb{A}

Let $\mathscr{B} = \{b_1, \ldots, b_{\delta}\}$ be a basis of \mathbb{A}

 $\mu_g : f \in \mathbb{A}_{\mathbb{Q}} \to f \times g \in \mathbb{A}_{\mathbb{Q}}$ $\mathscr{H}_{\mathbb{Q}} : (f,g) \in \mathbb{A}_{\mathbb{Q}}^2 \to \operatorname{Tr}(\mu_{f,g}) \rightsquigarrow \text{matrix representation } H_{\mathscr{B}}$ $\bullet \text{ the rank of } \mathscr{H}_{\mathbb{Q}} \text{ is the number of complex roots}$ $\bullet \text{ the signature of } \mathscr{H}_{\mathbb{Q}} \text{ is the number of real roots}$

Practical results

maple, RAGLIB, msolve

t	n	s	D	MAPLE[QE]	MATHEMATICA[QE]	MAT+DET	SP	total	DEG
2	3	2	2	> 10d	> 10d				
2	4	2	2	> 10d	> 10 d				
2		2	2	> 10d	> 10 d				
2		2	2	> 10d	> 10d				
3	3	2	2	> 10d	> 10d				
	4	2	2	> 10d	> 10 d				
		2	2	> 10d	> 10d				

Random dense systems

MAT +DET: compute Hermite matrices + minors DEG: highest degree in outputs SP: compute sample points

Practical results

maple, RAGLIB, msolve

t	n	s	D	MAPLE[QE]	MATHEMATICA[QE]	MAT+DET	SP	total	DEG
2	3	2	2	> 10d	> 10d	1s	6s	7s	24
2	4	2	2	> 10d	> 10 d	9s	2m	2m	40
2		2	2	> 10 d	> 10 d	2m	23m	25m	56
2	6	2	2	> 10d	> 10d	20m	6.5h	7 h	72
3	3	2	2	> 10d	> 10d	6s	3m	3m	24
	4	2	2	> 10 d	> 10 d	2m	43m	45m	40
		2	2	> 10d	> 10 d	1h	14h	15h	56

Random dense systems

MAT +DET: compute Hermite matrices + minors DEG: highest degree in outputs SP: compute sample points

Practical results

maple, RAGLIB, msolve

t	n	s	D	MAPLE[QE]	MATHEMATICA[QE]	MAT+DET	SP	total	DEG
2	3	2	2	> 10d	> 10d	1s	6s	7s	24
2	4	2	2	> 10d	> 10 d	9s	2m	2m	40
2		2	2	> 10d	> 10 d	2m	23m	25m	56
2	6	2	2	> 10d	> 10d	20m	6.5h	7h	72
3	3	2	2	> 10d	> 10d	6s	3m	3m	24
	4	2	2	> 10d	> 10d	2m	43m	45m	40
		2	2	> 10d	> 10 d	1h	14h	15h	56

Random dense systems

t	n	s	D	MAPLE	MATHEMATICA	MAT+DET	SP	total	DEG
3	4		2	> 10d	> 10d	2 m.	10 m.	12 m	34
3	5 	2	2	> 10d	> 10d	2 m.	10 m.	12 m	32
4 4	3 4		2	> 10d	> 10d > 10d	20 s. 15 s.	18 m.	19 m	20

Random sparse systems

MAT +DET: compute Hermite matrices + minors DEG: highest degree in outputs SP: compute sample points

Conclusions and perspectives

✓ new complexity results: probabilistic algorithm, genericity assumptions

✓ practical performances that reflect the complexity gains

✓ solves applications that were previously out of reach

generalization to the case involving inequalities

Conclusions and perspectives

✓ new complexity results: probabilistic algorithm, genericity assumptions

✓ practical performances that reflect the complexity gains

✓ solves applications that were previously out of reach

generalization to the case involving inequalities

X how to compute faster sample points in semi-algebraic sets defined by determinantal representations?

X how to remove the genericity assumptions?

X how to remove probabilistic aspects?