
Modern algorithms for one-block
quantifier elimination over the reals

Mohab Safey El Din

Joint works with Louis Gaillard and Huu Phuoc Le

1

One block quantifier elimination

∃x ∈ Rn f1 = · · · = fp = 0
g1 > 0, . . . , gs > 0

⇐
⇒

Φ(y) = Φ1(y) ∨ · · · ∨ Φℓ(y)

with

☛ x = (x1, . . . , xn), y = (y1, . . . , yt)
☛ fi and gj in Q[x, y]
☛ d = max. degree of the input

polynomials

∃x ∈ R x2 + bx + c = 0

⇐
⇒

b2 − 4c ≥ 0

∃x ∈ R ax2 + bx + c = 0

⇐
⇒

b2 − 4ac ≥ 0 ∧ a ̸= 0
∨

a = 0 ∧ b ̸= 0
∨

a = 0 ∧ b = 0 ∧ c = 0

One-block QE is equivalent to

compute a description of

some projection

The projection of
a semi-algebraic set

is semi-algebraic (Tarski)

2

One block quantifier elimination

∃x ∈ Rn f1 = · · · = fp = 0
g1 > 0, . . . , gs > 0

⇐
⇒

Φ(y) = Φ1(y) ∨ · · · ∨ Φℓ(y)

with

☛ x = (x1, . . . , xn), y = (y1, . . . , yt)
☛ fi and gj in Q[x, y]
☛ d = max. degree of the input

polynomials

∃x ∈ R x2 + bx + c = 0

⇐
⇒

b2 − 4c ≥ 0

∃x ∈ R ax2 + bx + c = 0

⇐
⇒

b2 − 4ac ≥ 0 ∧ a ̸= 0
∨

a = 0 ∧ b ̸= 0
∨

a = 0 ∧ b = 0 ∧ c = 0

One-block QE is equivalent to

compute a description of

some projection

The projection of
a semi-algebraic set

is semi-algebraic (Tarski)

2

One block quantifier elimination

∃x ∈ Rn f1 = · · · = fp = 0
g1 > 0, . . . , gs > 0

⇐
⇒

Φ(y) = Φ1(y) ∨ · · · ∨ Φℓ(y)

with

☛ x = (x1, . . . , xn), y = (y1, . . . , yt)
☛ fi and gj in Q[x, y]
☛ d = max. degree of the input

polynomials

∃x ∈ R x2 + bx + c = 0

⇐
⇒

b2 − 4c ≥ 0

∃x ∈ R ax2 + bx + c = 0

⇐
⇒

b2 − 4ac ≥ 0 ∧ a ̸= 0
∨

a = 0 ∧ b ̸= 0
∨

a = 0 ∧ b = 0 ∧ c = 0

One-block QE is equivalent to

compute a description of

some projection

The projection of
a semi-algebraic set

is semi-algebraic (Tarski)

2

One block quantifier elimination

∃x ∈ Rn f1 = · · · = fp = 0
g1 > 0, . . . , gs > 0

⇐
⇒

Φ(y) = Φ1(y) ∨ · · · ∨ Φℓ(y)

with

☛ x = (x1, . . . , xn), y = (y1, . . . , yt)
☛ fi and gj in Q[x, y]
☛ d = max. degree of the input

polynomials

∃x ∈ R x2 + bx + c = 0

⇐
⇒

b2 − 4c ≥ 0

∃x ∈ R ax2 + bx + c = 0

⇐
⇒

b2 − 4ac ≥ 0 ∧ a ̸= 0
∨

a = 0 ∧ b ̸= 0
∨

a = 0 ∧ b = 0 ∧ c = 0

One-block QE is equivalent to

compute a description of

some projection

The projection of
a semi-algebraic set

is semi-algebraic (Tarski)

2

One block quantifier elimination

∃x ∈ Rn f1 = · · · = fp = 0
g1 > 0, . . . , gs > 0

⇐
⇒

Φ(y) = Φ1(y) ∨ · · · ∨ Φℓ(y)

with

☛ x = (x1, . . . , xn), y = (y1, . . . , yt)
☛ fi and gj in Q[x, y]
☛ d = max. degree of the input

polynomials

∃x ∈ R x2 + bx + c = 0

⇐
⇒

b2 − 4c ≥ 0

∃x ∈ R ax2 + bx + c = 0

⇐
⇒

b2 − 4ac ≥ 0 ∧ a ̸= 0
∨

a = 0 ∧ b ̸= 0
∨

a = 0 ∧ b = 0 ∧ c = 0

One-block QE is equivalent to

compute a description of

some projection

The projection of
a semi-algebraic set

is semi-algebraic (Tarski)

2

State of the art

n-variate quantified formula

n− 1-variate quantified formula

Univariate root counting

n− 2-variate quantified formula

.

.

.

.

.

.

Unquantified formula

☛ d → d2

Cylindrical algebraic decomposition

dO(2
n+t)

CAD is at the foundations of

all general QE software

3

State of the art

n-variate quantified formula

n− 1-variate quantified formula

Univariate root counting

n− 2-variate quantified formula

.

.

.

.

.

.

Unquantified formula

☛ d → d2

Cylindrical algebraic decomposition

dO(2
n+t)

CAD is at the foundations of

all general QE software

3

State of the art

n-variate quantified formula

n− 1-variate quantified formula

Univariate root counting

n− 2-variate quantified formula

.

.

.

.

.

.

Unquantified formula

☛ d → d2

Cylindrical algebraic decomposition

dO(2
n+t)

CAD is at the foundations of

all general QE software

3

State of the art – Modern era starts

∃x ∈ Rn f1 = · · · = fp = 0
g1 > 0, . . . , gs > 0

⇐
⇒

Φ(y) = Φ1(y) ∨ · · · ∨ Φℓ(y)

with

☛ x = (x1, . . . , xn), y = (y1, . . . , yt)
☛ fi and gj in Q[x, y]
☛ d = max. degree of the input

polynomials

There exists an algorithm which performs
one block QE using s(n+1)(t+1)dO(nt) arithmetic operations
and outputs polynomials of degree bounded by dO(n).

Basu/Pollack/Roy

Input
0-dimensional

system
Sample points

Algebraic algorithms
; Q(y)

Formulas
Multivariate
root counting

4

State of the art – Modern era starts

∃x ∈ Rn f1 = · · · = fp = 0
g1 > 0, . . . , gs > 0

⇐
⇒

Φ(y) = Φ1(y) ∨ · · · ∨ Φℓ(y)

with

☛ x = (x1, . . . , xn), y = (y1, . . . , yt)
☛ fi and gj in Q[x, y]
☛ d = max. degree of the input

polynomials

There exists an algorithm which performs
one block QE using s(n+1)(t+1)dO(nt) arithmetic operations
and outputs polynomials of degree bounded by dO(n).

Basu/Pollack/Roy

Input
0-dimensional

system
Sample points

Algebraic algorithms
; Q(y)

Formulas
Multivariate
root counting

4

State of the art – Modern era starts

∃x ∈ Rn f1 = · · · = fp = 0
g1 > 0, . . . , gs > 0

⇐
⇒

Φ(y) = Φ1(y) ∨ · · · ∨ Φℓ(y)

with

☛ x = (x1, . . . , xn), y = (y1, . . . , yt)
☛ fi and gj in Q[x, y]
☛ d = max. degree of the input

polynomials

There exists an algorithm which performs
one block QE using s(n+1)(t+1)dO(nt) arithmetic operations
and outputs polynomials of degree bounded by dO(n).

Basu/Pollack/Roy

Input
0-dimensional

system
Sample points

Algebraic algorithms
; Q(y)

Formulas
Multivariate
root counting

4

What we want to do

There exists an algorithm which performs
one block QE using s(n+1)(t+1)dO(nt) arithmetic operations
and outputs polynomials of degree bounded by dO(n).

What is hidden by the Landau notation?

How to better represent semi-algebraic sets?
☛ Formulas should be easy to evaluate!

☛ We like determinantal representations

Can we perform faster in practice than

the best CAD implementations?

5

What we want to do

There exists an algorithm which performs
one block QE using s(n+1)(t+1)dO(nt) arithmetic operations
and outputs polynomials of degree bounded by dO(n).

What is hidden by the Landau notation?

How to better represent semi-algebraic sets?
☛ Formulas should be easy to evaluate!

☛ We like determinantal representations

Can we perform faster in practice than

the best CAD implementations?

5

What we want to do

There exists an algorithm which performs
one block QE using s(n+1)(t+1)dO(nt) arithmetic operations
and outputs polynomials of degree bounded by dO(n).

What is hidden by the Landau notation?

How to better represent semi-algebraic sets?
☛ Formulas should be easy to evaluate!

☛ We like determinantal representations

Can we perform faster in practice than

the best CAD implementations?

5

What we want to do

There exists an algorithm which performs
one block QE using s(n+1)(t+1)dO(nt) arithmetic operations
and outputs polynomials of degree bounded by dO(n).

What is hidden by the Landau notation?

How to better represent semi-algebraic sets?
☛ Formulas should be easy to evaluate!

☛ We like determinantal representations

Can we perform faster in practice than

the best CAD implementations?

5

Main result

∃x ∈ Rn f1 = · · · = fp = 0
g1 > 0, . . . , gs > 0

⇐
⇒

Φ(y) = Φ1(y) ∨ · · · ∨ Φℓ(y)

with

☛ x = (x1, . . . , xn), y = (y1, . . . , yt)
☛ fi and gj in Q[x, y]
☛ d = max. degree of the input

polynomials

• regularity / transversality assumptions on f1, . . . , fp
• output defines a Zariski dense subset of

the projection of VR(f1, . . . , fp)

There exists a randomized algorithm that performs (weak) one block QE using

O
(
8tD3t(t+D

t

))
arithmetic operations with D = ndp(d − 1)n−p+1(n

p−1

)
and with output polynomials of degree bounded by D , for generic entries.

✓ output polynomials are given as minors of some matrices
preliminary implementation → solves problems previously unreachable

6

Main result

∃x ∈ Rn f1 = · · · = fp = 0
g1 > 0, . . . , gs > 0

⇐
⇒

Φ(y) = Φ1(y) ∨ · · · ∨ Φℓ(y)

with

☛ x = (x1, . . . , xn), y = (y1, . . . , yt)
☛ fi and gj in Q[x, y]
☛ d = max. degree of the input

polynomials

• regularity / transversality assumptions on f1, . . . , fp
• output defines a Zariski dense subset of

the projection of VR(f1, . . . , fp)

There exists a randomized algorithm that performs (weak) one block QE using

O
(
8tD3t(t+D

t

))
arithmetic operations with D = ndp(d − 1)n−p+1(n

p−1

)
and with output polynomials of degree bounded by D , for generic entries.

✓ output polynomials are given as minors of some matrices
preliminary implementation → solves problems previously unreachable

6

Main result

∃x ∈ Rn f1 = · · · = fp = 0
g1 > 0, . . . , gs > 0

⇐
⇒

Φ(y) = Φ1(y) ∨ · · · ∨ Φℓ(y)

with

☛ x = (x1, . . . , xn), y = (y1, . . . , yt)
☛ fi and gj in Q[x, y]
☛ d = max. degree of the input

polynomials

• regularity / transversality assumptions on f1, . . . , fp
• output defines a Zariski dense subset of

the projection of VR(f1, . . . , fp)

There exists a randomized algorithm that performs (weak) one block QE using

O
(
8tD3t(t+D

t

))
arithmetic operations with D = ndp(d − 1)n−p+1(n

p−1

)
and with output polynomials of degree bounded by D , for generic entries.

✓ output polynomials are given as minors of some matrices
preliminary implementation → solves problems previously unreachable

6

Main result

∃x ∈ Rn f1 = · · · = fp = 0
g1 > 0, . . . , gs > 0

⇐
⇒

Φ(y) = Φ1(y) ∨ · · · ∨ Φℓ(y)

with

☛ x = (x1, . . . , xn), y = (y1, . . . , yt)
☛ fi and gj in Q[x, y]
☛ d = max. degree of the input

polynomials

• regularity / transversality assumptions on f1, . . . , fp
• output defines a Zariski dense subset of

the projection of VR(f1, . . . , fp)

There exists a randomized algorithm that performs (weak) one block QE using

O
(
8tD3t(t+D

t

))
arithmetic operations with D = ndp(d − 1)n−p+1(n

p−1

)
and with output polynomials of degree bounded by D , for generic entries.

✓ output polynomials are given as minors of some matrices
preliminary implementation → solves problems previously unreachable

6

First ingredients (I)

Input
0-dimensional

system
Sample points

Algebraic algorithms
Formulas

Multivariate
root counting

Up to a generic linear change of coordinates
the projection on the (x1, . . . , xi)-subspace
of VR is closed.

f1 = · · · = fp = x1 = · · · = xi−1 = 0

rk


∂f1

∂xi+1
· · · ∂f1

∂xn
.
.
.

.

.

.

∂fp
∂xi+1

· · · ∂fp
∂xn

 < p

S./Schost’03

✓ degree bound dp(d − 1)n−i−p
(n−i−1

p−1

)
✓ determinantal ideals ; nice properties

7

First ingredients (I)

Input
0-dimensional

system
Sample points

Algebraic algorithms
Formulas

Multivariate
root counting

Up to a generic linear change of coordinates
the projection on the (x1, . . . , xi)-subspace
of VR is closed.

f1 = · · · = fp = x1 = · · · = xi−1 = 0

rk


∂f1

∂xi+1
· · · ∂f1

∂xn
.
.
.

.

.

.

∂fp
∂xi+1

· · · ∂fp
∂xn

 < p

S./Schost’03

✓ degree bound dp(d − 1)n−i−p
(n−i−1

p−1

)
✓ determinantal ideals ; nice properties

7

First ingredients (I)

Input
0-dimensional

system
Sample points

Algebraic algorithms
Formulas

Multivariate
root counting

Up to a generic linear change of coordinates
the projection on the (x1, . . . , xi)-subspace
of VR is closed.

f1 = · · · = fp = x1 = · · · = xi−1 = 0

rk


∂f1

∂xi+1
· · · ∂f1

∂xn
.
.
.

.

.

.

∂fp
∂xi+1

· · · ∂fp
∂xn

 < p

S./Schost’03

✓ degree bound dp(d − 1)n−i−p
(n−i−1

p−1

)
✓ determinantal ideals ; nice properties

7

First ingredients (I)

Input
0-dimensional

system
Sample points

Algebraic algorithms
Formulas

Multivariate
root counting

Up to a generic linear change of coordinates
the projection on the (x1, . . . , xi)-subspace
of VR is closed.

f1 = · · · = fp = x1 = · · · = xi−1 = 0

rk


∂f1

∂xi+1
· · · ∂f1

∂xn
.
.
.

.

.

.

∂fp
∂xi+1

· · · ∂fp
∂xn

 < p

S./Schost’03

✓ degree bound dp(d − 1)n−i−p
(n−i−1

p−1

)
✓ determinantal ideals ; nice properties

7

First ingredients (I)

Input
0-dimensional

system
Sample points

Algebraic algorithms
Formulas

Multivariate
root counting

Up to a generic linear change of coordinates
the projection on the (x1, . . . , xi)-subspace
of VR is closed.

f1 = · · · = fp = x1 = · · · = xi−1 = 0

rk


∂f1

∂xi+1
· · · ∂f1

∂xn
.
.
.

.

.

.

∂fp
∂xi+1

· · · ∂fp
∂xn

 < p

S./Schost’03

✓ degree bound dp(d − 1)n−i−p
(n−i−1

p−1

)
✓ determinantal ideals ; nice properties

7

First ingredients (II)

Input
0-dimensional

system
Sample points

Algebraic algorithms
; Q(y)

Formulas
Multivariate
root counting

f1 = · · · = fp = x1 = · · · = xi−1 = 0

rk


∂f1

∂xi+1
· · · ∂f1

∂xn
.
.
.

.

.

.

∂fp
∂xi+1

· · · ∂fp
∂xn

 < p

Parametrized systems of critical points

zero-dimenional + determinantal structure

With parameters, we need a specialization theorem

One generic linear change of variables is ok
for almost all parameter’s values.

8

First ingredients (II)

Input
0-dimensional

system
Sample points

Algebraic algorithms
; Q(y)

Formulas
Multivariate
root counting

f1 = · · · = fp = x1 = · · · = xi−1 = 0

rk


∂f1

∂xi+1
· · · ∂f1

∂xn
.
.
.

.

.

.

∂fp
∂xi+1

· · · ∂fp
∂xn

 < p

Parametrized systems of critical points

zero-dimenional + determinantal structure

With parameters, we need a specialization theorem

One generic linear change of variables is ok
for almost all parameter’s values.

8

First ingredients (II)

Input
0-dimensional

system
Sample points

Algebraic algorithms
; Q(y)

Formulas
Multivariate
root counting

f1 = · · · = fp = x1 = · · · = xi−1 = 0

rk


∂f1

∂xi+1
· · · ∂f1

∂xn
.
.
.

.

.

.

∂fp
∂xi+1

· · · ∂fp
∂xn

 < p

Parametrized systems of critical points

zero-dimenional + determinantal structure

With parameters, we need a specialization theorem

One generic linear change of variables is ok
for almost all parameter’s values.

8

Second ingredients

Input
0-dimensional

system
Sample points

Algebraic algorithms
; Q(y)

Formulas
Multivariate
root counting

Parametrized system with finitely many solutions in Q(y)

Let I be the ideal generated by these equations

☛ The quotient ring A = Q(y)[x]
I allows

to compute ”modulo” the solutions

☛ The quotient ring A = Q(y)[x]
I is a

finite dimensional vector space

Gröbner bases
A confluent rewriting system

Let B = {b1, . . . , bδ} be a basis of A
µg : f ∈ AQ → f × g ∈ AQ

HQ : (f , g) ∈ A2
Q → Tr(µf .g); matrix representation HB

☛ the rank of HQ is the number of complex roots

☛ the signature of HQ is the number of real roots

9

Second ingredients

Input
0-dimensional

system
Sample points

Algebraic algorithms
; Q(y)

Formulas
Multivariate
root counting

Parametrized system with finitely many solutions in Q(y)

Let I be the ideal generated by these equations

☛ The quotient ring A = Q(y)[x]
I allows

to compute ”modulo” the solutions

☛ The quotient ring A = Q(y)[x]
I is a

finite dimensional vector space

Gröbner bases
A confluent rewriting system

Let B = {b1, . . . , bδ} be a basis of A

µg : f ∈ AQ → f × g ∈ AQ

HQ : (f , g) ∈ A2
Q → Tr(µf .g); matrix representation HB

☛ the rank of HQ is the number of complex roots

☛ the signature of HQ is the number of real roots

9

Second ingredients

Input
0-dimensional

system
Sample points

Algebraic algorithms
; Q(y)

Formulas
Multivariate
root counting

Parametrized system with finitely many solutions in Q(y)

Let I be the ideal generated by these equations

☛ The quotient ring A = Q(y)[x]
I allows

to compute ”modulo” the solutions

☛ The quotient ring A = Q(y)[x]
I is a

finite dimensional vector space

Gröbner bases
A confluent rewriting system

Let B = {b1, . . . , bδ} be a basis of A
µg : f ∈ AQ → f × g ∈ AQ

HQ : (f , g) ∈ A2
Q → Tr(µf .g); matrix representation HB

☛ the rank of HQ is the number of complex roots

☛ the signature of HQ is the number of real roots

9

Second ingredients

Input
0-dimensional

system
Sample points

Algebraic algorithms
; Q(y)

Formulas
Multivariate
root counting

Hermite matrix HK computed over K = Q(y)

Sample points in
semi-algebraic sets

☛ Specialization property for HK and HK

☛ When I is generated by generic polynomials,

deg(HK[i, j]) ≤ deg(bi) + deg(bj)
☛ Hilbert series + graded orderings

all principal minors have degree n(d − 1)dn

Our ideals are

NOT generic

The combinatorics of determinantal ideals

Hilbert series
(∑d−1

i=0 zi
)p (∑d−2

i=0 zi
)n−p ∑p−1

i=0
(n−p−1+i

i

)
z(d−1)i

Berthomieu/Bostan/Ferguson/S.’21

10

Second ingredients

Input
0-dimensional

system
Sample points

Algebraic algorithms
; Q(y)

Formulas
Multivariate
root counting

Hermite matrix HK computed over K = Q(y)
Sample points in
semi-algebraic sets

☛ Specialization property for HK and HK

☛ When I is generated by generic polynomials,

deg(HK[i, j]) ≤ deg(bi) + deg(bj)
☛ Hilbert series + graded orderings

all principal minors have degree n(d − 1)dn

Our ideals are

NOT generic

The combinatorics of determinantal ideals

Hilbert series
(∑d−1

i=0 zi
)p (∑d−2

i=0 zi
)n−p ∑p−1

i=0
(n−p−1+i

i

)
z(d−1)i

Berthomieu/Bostan/Ferguson/S.’21

10

Second ingredients

Input
0-dimensional

system
Sample points

Algebraic algorithms
; Q(y)

Formulas
Multivariate
root counting

Hermite matrix HK computed over K = Q(y)
Sample points in
semi-algebraic sets

☛ Specialization property for HK and HK

☛ When I is generated by generic polynomials,

deg(HK[i, j]) ≤ deg(bi) + deg(bj)
☛ Hilbert series + graded orderings

all principal minors have degree n(d − 1)dn

Our ideals are

NOT generic

The combinatorics of determinantal ideals

Hilbert series
(∑d−1

i=0 zi
)p (∑d−2

i=0 zi
)n−p ∑p−1

i=0
(n−p−1+i

i

)
z(d−1)i

Berthomieu/Bostan/Ferguson/S.’21

10

Second ingredients

Input
0-dimensional

system
Sample points

Algebraic algorithms
; Q(y)

Formulas
Multivariate
root counting

Hermite matrix HK computed over K = Q(y)
Sample points in
semi-algebraic sets

☛ Specialization property for HK and HK

☛ When I is generated by generic polynomials,

deg(HK[i, j]) ≤ deg(bi) + deg(bj)
☛ Hilbert series + graded orderings

all principal minors have degree n(d − 1)dn

Our ideals are

NOT generic

The combinatorics of determinantal ideals

Hilbert series
(∑d−1

i=0 zi
)p (∑d−2

i=0 zi
)n−p ∑p−1

i=0
(n−p−1+i

i

)
z(d−1)i

Berthomieu/Bostan/Ferguson/S.’21

10

Second ingredients

Input
0-dimensional

system
Sample points

Algebraic algorithms
; Q(y)

Formulas
Multivariate
root counting

Hermite matrix HK computed over K = Q(y)
Sample points in
semi-algebraic sets

☛ Specialization property for HK and HK

☛ When I is generated by generic polynomials,

deg(HK[i, j]) ≤ deg(bi) + deg(bj)
☛ Hilbert series + graded orderings

all principal minors have degree n(d − 1)dn

Our ideals are

NOT generic

The combinatorics of determinantal ideals

Hilbert series
(∑d−1

i=0 zi
)p (∑d−2

i=0 zi
)n−p ∑p−1

i=0
(n−p−1+i

i

)
z(d−1)i

Berthomieu/Bostan/Ferguson/S.’21

10

Practical results maple, RAGlib, msolve
t n s D maple[qe] mathematica[qe] mat+det sp total deg

2 3 2 2 > 10d > 10d

1s 6s 7s 24

2 4 2 2 > 10d > 10d

9s 2m 2m 40

2 5 2 2 > 10d > 10d

2m 23m 25m 56

2 6 2 2 > 10d > 10d

20m 6.5h 7h 72

3 3 2 2 > 10d > 10d

6s 3m 3m 24

3 4 2 2 > 10d > 10d

2m 43m 45m 40

3 5 2 2 > 10d > 10d

1h 14h 15h 56

Random dense systems

t n s D maple mathematica mat+det sp total deg

3 4 2 2 > 10d > 10d 2 m. 10 m. 12 m 34

3 5 2 2 > 10d > 10d 2 m. 10 m. 12 m 32

4 3 2 2 > 10d > 10d 20 s. 20 m. 21 m 22

4 4 2 2 > 10d > 10d 15 s. 18 m. 19 m 20

Random sparse systems

mat +det: compute Hermite matrices + minors

sp: compute sample points

deg: highest degree in outputs

11

Practical results maple, RAGlib, msolve
t n s D maple[qe] mathematica[qe] mat+det sp total deg

2 3 2 2 > 10d > 10d 1s 6s 7s 24

2 4 2 2 > 10d > 10d 9s 2m 2m 40

2 5 2 2 > 10d > 10d 2m 23m 25m 56

2 6 2 2 > 10d > 10d 20m 6.5h 7h 72

3 3 2 2 > 10d > 10d 6s 3m 3m 24

3 4 2 2 > 10d > 10d 2m 43m 45m 40

3 5 2 2 > 10d > 10d 1h 14h 15h 56

Random dense systems

t n s D maple mathematica mat+det sp total deg

3 4 2 2 > 10d > 10d 2 m. 10 m. 12 m 34

3 5 2 2 > 10d > 10d 2 m. 10 m. 12 m 32

4 3 2 2 > 10d > 10d 20 s. 20 m. 21 m 22

4 4 2 2 > 10d > 10d 15 s. 18 m. 19 m 20

Random sparse systems

mat +det: compute Hermite matrices + minors

sp: compute sample points

deg: highest degree in outputs

11

Practical results maple, RAGlib, msolve
t n s D maple[qe] mathematica[qe] mat+det sp total deg

2 3 2 2 > 10d > 10d 1s 6s 7s 24

2 4 2 2 > 10d > 10d 9s 2m 2m 40

2 5 2 2 > 10d > 10d 2m 23m 25m 56

2 6 2 2 > 10d > 10d 20m 6.5h 7h 72

3 3 2 2 > 10d > 10d 6s 3m 3m 24

3 4 2 2 > 10d > 10d 2m 43m 45m 40

3 5 2 2 > 10d > 10d 1h 14h 15h 56

Random dense systems

t n s D maple mathematica mat+det sp total deg

3 4 2 2 > 10d > 10d 2 m. 10 m. 12 m 34

3 5 2 2 > 10d > 10d 2 m. 10 m. 12 m 32

4 3 2 2 > 10d > 10d 20 s. 20 m. 21 m 22

4 4 2 2 > 10d > 10d 15 s. 18 m. 19 m 20

Random sparse systems

mat +det: compute Hermite matrices + minors

sp: compute sample points

deg: highest degree in outputs

11

Conclusions and perspectives

✓ new complexity results: probabilistic algorithm, genericity assumptions

✓ practical performances that reflect the complexity gains

✓ solves applications that were previously out of reach

✓ generalization to the case involving inequalities

✗ how to compute faster sample points in semi-algebraic sets defined by

determinantal representations?

✗ how to remove the genericity assumptions?

✗ how to remove probabilistic aspects?

12

Conclusions and perspectives

✓ new complexity results: probabilistic algorithm, genericity assumptions

✓ practical performances that reflect the complexity gains

✓ solves applications that were previously out of reach

✓ generalization to the case involving inequalities

✗ how to compute faster sample points in semi-algebraic sets defined by

determinantal representations?

✗ how to remove the genericity assumptions?

✗ how to remove probabilistic aspects?

12

