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For programs with only linear updates
x := Ax+ b and no conditional
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We can simulate states and constants using additional variables.

Therefore programs as before can be reduced to matrix vector multiplication

while true do
Non-Det.Choice:
Option 1: x = A1x
Option 2: . . .
Option r: x = Arx

end while

Hence we study matrix semigroups, i.e. sets of the form

⟨A1, . . . ,Ar ⟩ := {Ai1 ◦ · · · ◦ Ain | n ∈ N, ij ∈ {1, . . . , r}}
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Theorem (Hrushovski, Ouaknine, Pouly, Worrell, 2018)

Given not necessarily invertible matrices A1, . . . ,Ar ∈ Qn×n
for some n, the

Zariski closure of ⟨A1, . . . ,Ar ⟩ can be computed.

Theorem (Nosan, Pouly, Shirmohammadi, Worrell 2022)

Given invertible matrices A1, . . . ,Ar ∈ GLn(Q), the Zariski closure can be
computed in 7-EXPTIME.

Our goal is to reduce the complexity/generalize to semigroups.
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Proof.

For the upper bound, simply guess the product leading to A.
(NPSPACE=PSPACE)
For the lower bound, reduce from DFA-intersection-emptiness.

5 / 13



Subject + Context of This Talk

Theorem (This Talk)

If the semigroup S = ⟨A1, . . . ,Ar ⟩ ⊆ Qn×n is finite, then every matrix A ∈ S has
polynomial bitsize in terms of A1, . . . ,Ar . (I.e. semigroups have |S | ≤ exp.)

5 / 13



Subject + Context of This Talk

Theorem (This Talk)

If the semigroup S = ⟨A1, . . . ,Ar ⟩ ⊆ Qn×n is finite, then every matrix A ∈ S has
polynomial bitsize in terms of A1, . . . ,Ar . (I.e. semigroups have |S | ≤ exp.)

Theorem (Folklore)

If the group G = ⟨A1, . . . ,Ar ⟩ ⊆ GLn(Q) is finite, then |G | ≤ 2n · n!.

5 / 13



Subject + Context of This Talk

Theorem (This Talk)

If the semigroup S = ⟨A1, . . . ,Ar ⟩ ⊆ Qn×n is finite, then every matrix A ∈ S has
polynomial bitsize in terms of A1, . . . ,Ar . (I.e. semigroups have |S | ≤ exp.)

Theorem (Folklore)

If the group G = ⟨A1, . . . ,Ar ⟩ ⊆ GLn(Q) is finite, then |G | ≤ 2n · n!.

Theorem (Bumpus, Haase, Kiefer, Stoienescu, Tanner 2020)

If the semigroup S = ⟨A1, . . . ,Ar ⟩ is finite, then every element can be obtained
by an exponential length product.

5 / 13



Subject + Context of This Talk

Theorem (This Talk)

If the semigroup S = ⟨A1, . . . ,Ar ⟩ ⊆ Qn×n is finite, then every matrix A ∈ S has
polynomial bitsize in terms of A1, . . . ,Ar . (I.e. semigroups have |S | ≤ exp.)

Theorem (Folklore)

If the group G = ⟨A1, . . . ,Ar ⟩ ⊆ GLn(Q) is finite, then |G | ≤ 2n · n!.

Theorem (Bumpus, Haase, Kiefer, Stoienescu, Tanner 2020)

If the semigroup S = ⟨A1, . . . ,Ar ⟩ is finite, then every element can be obtained
by an exponential length product. (I.e. semigroups have |S | ≤ 2-exp.)

5 / 13



Subject + Context of This Talk

Theorem (This Talk)

If the semigroup S = ⟨A1, . . . ,Ar ⟩ ⊆ Qn×n is finite, then every matrix A ∈ S has
polynomial bitsize in terms of A1, . . . ,Ar . (I.e. semigroups have |S | ≤ exp.)

5 / 13



Subject + Context of This Talk

Theorem (This Talk)

If the semigroup S = ⟨A1, . . . ,Ar ⟩ ⊆ Qn×n is finite, then every matrix A ∈ S has
polynomial bitsize in terms of A1, . . . ,Ar . (I.e. semigroups have |S | ≤ exp.)

Developed a tool which is applicable for general semigroups.

5 / 13



Subject + Context of This Talk

Theorem (This Talk)

If the semigroup S = ⟨A1, . . . ,Ar ⟩ ⊆ Qn×n is finite, then every matrix A ∈ S has
polynomial bitsize in terms of A1, . . . ,Ar . (I.e. semigroups have |S | ≤ exp.)

Developed a tool which is applicable for general semigroups.

Theorem (Our Main Tool)

Given a number field K and semigroup S = ⟨A1, . . . ,Ar ⟩ ⊆ Kn×n, we can in
PTIME compute an irreducible component decomposition of S over K .

5 / 13



Subject + Context of This Talk

Theorem (This Talk)

If the semigroup S = ⟨A1, . . . ,Ar ⟩ ⊆ Qn×n is finite, then every matrix A ∈ S has
polynomial bitsize in terms of A1, . . . ,Ar . (I.e. semigroups have |S | ≤ exp.)

Developed a tool which is applicable for general semigroups.

Theorem (Our Main Tool)

Given a number field K and semigroup S = ⟨A1, . . . ,Ar ⟩ ⊆ Kn×n, we can in
PTIME compute an irreducible component decomposition of S over K .

Rest of this talk: Explains irreducible components + theorems
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S is stably-strongly-connected if every base
change PSP−1 is strongly-connected.

S is irreducible if there is no vector space
{0} ≠ V ⊊ Qn s.t. S · V ⊆ V .

Lemma

Let S be a semigroup. T.F.A.E.:

1 S is not stably-strongly-connected.

2 S is not irreducible.

3 ∃P ∈ GLn(Q) s.t. all A ∈ PSP−1 are
block-upper-triangular with ≥ 2 blocks.

A =

(
1 1
0 1

)
,B =

(
1 2
0 1

)

q1 q2

a, 1 a, 1

a, 1

b, 1 b, 1

b, 2

C =

1 1 1
1 1 1
0 0 1

 , C =

(
∗ ∗
0 1

)
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Reminder: Goal of This Talk

Theorem (This Talk)

If the semigroup S = ⟨A1, . . . ,Ar ⟩ ⊆ Qn×n is finite, then every matrix A ∈ S has
polynomial bitsize in terms of A1, . . . ,Ar . (I.e. semigroups have |S | ≤ exp.)

Developed a tool which is applicable for general semigroups.

Theorem (Our Main Tool)

Given a number field K and semigroup S = ⟨A1, . . . ,Ar ⟩ ⊆ Kn×n, we can in
PTIME compute an irreducible component decomposition of S over K .
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polynomial bitsize in terms of A1, . . . ,Ar . (I.e. semigroups have |S | ≤ exp).

Step 1: W.l.o.g. S = PSP−1 is in ICD.

Step 2+3: Separately deal with block-diagonal + above.

Above block-diagonal is easier, hence here I only explain
the block-diagonal itself.

Hence w.l.o.g. S is irreducible.

In other words: We spent a large amount of this talk
reducing to irreducible semigroups.
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The technique is as follows:

Lemma

Let V ,V ′ vector spaces, let
T : V → V ′ linear, x ∈ V . If

Matrix of T has polysize,

T is invertible,

and T (x) has polysize,

then x has polysize.
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