Finite Rational Matrix Semigroups have at most Exponential Size

Rida Ait El Manssour, Roland Guttenberg, Nathan Lhote, Mahsa Shirmohammadi, James Worrell

Workshop on Loop Invariants and Algebraic Reasoning

July 7 2025

Motivation: Synthesizing Loop Invariants

 x = 0v = 0while true do if x > 0 then x = 2x - y - 1y=y-1else x=2y-x+1y=y+1end if end while

x = 0v = 0while true do if x > 0 then x=2x-y-1y=y-1else x=2y-x+1y=y+1end if end while

Can we ever have x = y + 2?

x = 0y = 0while true do if x > 0 then x=2x-v-1y = y - 1else x=2y-x+1y=y+1end if end while

Can we ever have x = y + 2? No. Loop Invariant "x = y"

・ロン・(語)とくほど、(語)と、(語)

x = 0v = 0while true do if x > 0 then x=2x-v-1v = v - 1else x = 2y - x + 1y=y+1end if end while

 $\begin{array}{l} x=0\\ y=0\\ \text{while true do}\\ \text{Non-Det.Choice:}\\ \text{Option 1: } x=2x-y-1; \ y=y-1\\ \text{Option 2: } x=2y-x+1; \ y=y+1\\ \text{end while} \end{array}$

Can we ever have x = y + 2? No. Loop Invariant "x = y"

x = 0v = 0while true do if x > 0 then x=2x-v-1v = v - 1else x=2y-x+1v = v + 1end if end while

 $\begin{array}{l} x=0\\ y=0\\ \text{while true do}\\ \text{Non-Det.Choice:}\\ \text{Option 1: } x=2x-y-1; \ y=y-1\\ \text{Option 2: } x=2y-x+1; \ y=y+1\\ \text{end while} \end{array}$

For programs with only linear updates $\mathbf{x} := A\mathbf{x} + \mathbf{b}$ and no conditional branching,

Can we ever have x = y + 2? No. Loop Invariant "x = y"

x = 0v = 0while true do if x > 0 then x=2x-v-1v = v - 1else x=2y-x+1v = v + 1end if end while

 $\begin{array}{l} x=0\\ y=0\\ \text{while true do}\\ \text{Non-Det.Choice:}\\ \text{Option 1: } x=2x-y-1; \ y=y-1\\ \text{Option 2: } x=2y-x+1; \ y=y+1\\ \text{end while} \end{array}$

For programs with only linear updates $\mathbf{x} := A\mathbf{x} + \mathbf{b}$ and no conditional branching, *all* polynomial loop invariants can be automatically synthesized.

Can we ever have x = y + 2? No. Loop Invariant "x = y"

Matrix Semigroups

Therefore programs as before can be reduced to matrix vector multiplication

Therefore programs as before can be reduced to matrix vector multiplication while true do

```
Non-Det.Choice:
Option 1: \mathbf{x} = A_1 \mathbf{x}
Option 2: ...
Option r: \mathbf{x} = A_r \mathbf{x}
end while
```

Therefore programs as before can be reduced to matrix vector multiplication while true do Non-Det.Choice:

```
Option 1: \mathbf{x} = A_1 \mathbf{x}
Option 2: ...
Option r: \mathbf{x} = A_r \mathbf{x}
end while
```

Hence we study matrix semigroups, i.e. sets of the form

Therefore programs as before can be reduced to matrix vector multiplication while true do

Non-Det.Choice:

Option 1: $\mathbf{x} = A_1 \mathbf{x}$ Option 2: ... Option r: $\mathbf{x} = A_r \mathbf{x}$ end while

Hence we study matrix semigroups, i.e. sets of the form

 $\langle A_1,\ldots,A_r\rangle := \{A_{i_1}\circ\cdots\circ A_{i_n} \mid n\in\mathbb{N}, i_j\in\{1,\ldots,r\}\}$

Prior Work

・ロ > <
一 > <
一 > <
言 > <
言 > 、
そ き > 、
言 の へ ()
4 / 13

Given invertible matrices $A_1, \ldots, A_r \in GL_n(\overline{\mathbb{Q}})$, the Zariski closure of $\langle A_1, \ldots, A_r \rangle$ /the optimal polynomial invariants can be computed.

Given invertible matrices $A_1, \ldots, A_r \in GL_n(\overline{\mathbb{Q}})$, the Zariski closure of $\langle A_1, \ldots, A_r \rangle$ /the optimal polynomial invariants can be computed.

Theorem (Hrushovski, Ouaknine, Pouly, Worrell, 2018)

Given not necessarily invertible matrices $A_1, \ldots, A_r \in \overline{\mathbb{Q}}^{n \times n}$ for some *n*, the Zariski closure of $\langle A_1, \ldots, A_r \rangle$ can be computed.

Given invertible matrices $A_1, \ldots, A_r \in GL_n(\overline{\mathbb{Q}})$, the Zariski closure of $\langle A_1, \ldots, A_r \rangle$ /the optimal polynomial invariants can be computed.

Theorem (Hrushovski, Ouaknine, Pouly, Worrell, 2018)

Given not necessarily invertible matrices $A_1, \ldots, A_r \in \overline{\mathbb{Q}}^{n \times n}$ for some *n*, the Zariski closure of $\langle A_1, \ldots, A_r \rangle$ can be computed.

Theorem (Nosan, Pouly, Shirmohammadi, Worrell 2022)

Given invertible matrices $A_1, \ldots, A_r \in GL_n(\overline{\mathbb{Q}})$, the Zariski closure can be computed in 7-EXPTIME.

Given invertible matrices $A_1, \ldots, A_r \in GL_n(\overline{\mathbb{Q}})$, the Zariski closure of $\langle A_1, \ldots, A_r \rangle$ /the optimal polynomial invariants can be computed.

Theorem (Hrushovski, Ouaknine, Pouly, Worrell, 2018)

Given not necessarily invertible matrices $A_1, \ldots, A_r \in \overline{\mathbb{Q}}^{n \times n}$ for some *n*, the Zariski closure of $\langle A_1, \ldots, A_r \rangle$ can be computed.

Theorem (Nosan, Pouly, Shirmohammadi, Worrell 2022)

Given invertible matrices $A_1, \ldots, A_r \in GL_n(\overline{\mathbb{Q}})$, the Zariski closure can be computed in 7-EXPTIME.

Our goal is to reduce the complexity/generalize to semigroups,

Subject + Context of This Talk

${\sf Subject} + {\sf Context} \text{ of This Talk}$

First Step: Identify and solve easy cases.

First Step: Identify and solve easy cases. First such case and subject of this talk: Finite matrix semigroups. First Step: Identify and solve easy cases. First such case and subject of this talk: Finite matrix semigroups.

Theorem (This Talk)

If the semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

First Step: Identify and solve easy cases. First such case and subject of this talk: Finite matrix semigroups.

Theorem (This Talk)

If the semigroup $S = \langle A_1, ..., A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of $A_1, ..., A_r$. (I.e. semigroups have $|S| \leq exp$.)

If the semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r . (I.e. semigroups have $|S| \leq exp$.)

Corollary

The membership problem in finite semigroups is PSPACE-complete:

If the semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r . (I.e. semigroups have $|S| \leq exp$.)

Corollary

The membership problem in finite semigroups is PSPACE-complete: Input: Finite semigroup $S = \langle A_1, ..., A_r \rangle$, matrix A.

If the semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r . (I.e. semigroups have $|S| \leq exp$.)

Corollary

The membership problem in finite semigroups is PSPACE-complete: Input: Finite semigroup $S = \langle A_1, ..., A_r \rangle$, matrix A. Output: Is $A \in \langle A_1, ..., A_r \rangle$?

If the semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r . (I.e. semigroups have $|S| \leq exp$.)

Corollary

The membership problem in finite semigroups is PSPACE-complete: Input: Finite semigroup $S = \langle A_1, ..., A_r \rangle$, matrix A. Output: Is $A \in \langle A_1, ..., A_r \rangle$?

Proof.

If the semigroup $S = \langle A_1, ..., A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of $A_1, ..., A_r$. (I.e. semigroups have $|S| \leq exp$.)

Corollary

The membership problem in finite semigroups is PSPACE-complete: Input: Finite semigroup $S = \langle A_1, ..., A_r \rangle$, matrix A. Output: Is $A \in \langle A_1, ..., A_r \rangle$?

Proof.

For the upper bound, simply guess the product leading to *A*. (NPSPACE=PSPACE)

If the semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r . (I.e. semigroups have $|S| \leq exp$.)

Corollary

The membership problem in finite semigroups is PSPACE-complete: Input: Finite semigroup $S = \langle A_1, ..., A_r \rangle$, matrix A. Output: Is $A \in \langle A_1, ..., A_r \rangle$?

Proof.

For the upper bound, simply guess the product leading to *A*. (NPSPACE=PSPACE) For the lower bound, reduce from DFA-intersection-emptiness.

If the semigroup $S = \langle A_1, ..., A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of $A_1, ..., A_r$. (I.e. semigroups have $|S| \leq exp$.)

If the semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r . (I.e. semigroups have $|S| \leq exp$.)

Theorem (Folklore)

If the group $G = \langle A_1, \ldots, A_r \rangle \subseteq GL_n(\mathbb{Q})$ is finite, then $|G| \leq 2^n \cdot n!$.

If the semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r . (I.e. semigroups have $|S| \leq exp$.)

Theorem (Folklore)

If the group
$$G = \langle A_1, \ldots, A_r \rangle \subseteq GL_n(\mathbb{Q})$$
 is finite, then $|G| \leq 2^n \cdot n!$.

Theorem (Bumpus, Haase, Kiefer, Stoienescu, Tanner 2020)

If the semigroup $S = \langle A_1, \ldots, A_r \rangle$ is finite, then every element can be obtained by an exponential length product.

If the semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r . (I.e. semigroups have $|S| \leq exp$.)

Theorem (Folklore)

If the group
$$G = \langle A_1, \ldots, A_r \rangle \subseteq GL_n(\mathbb{Q})$$
 is finite, then $|G| \leq 2^n \cdot n!$.

Theorem (Bumpus, Haase, Kiefer, Stoienescu, Tanner 2020)

If the semigroup $S = \langle A_1, \ldots, A_r \rangle$ is finite, then every element can be obtained by an exponential length product. (I.e. semigroups have $|S| \leq 2$ -exp.)

If the semigroup $S = \langle A_1, ..., A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of $A_1, ..., A_r$. (I.e. semigroups have $|S| \leq exp$.)

If the semigroup $S = \langle A_1, ..., A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of $A_1, ..., A_r$. (I.e. semigroups have $|S| \leq exp$.)

Developed a tool which is applicable for general semigroups.

Theorem (This Talk)

If the semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r . (I.e. semigroups have $|S| \leq exp$.)

Developed a tool which is applicable for general semigroups.

Theorem (Our Main Tool)

Given a number field K and semigroup $S = \langle A_1, ..., A_r \rangle \subseteq K^{n \times n}$, we can in PTIME compute an irreducible component decomposition of S over K.

Theorem (This Talk)

If the semigroup $S = \langle A_1, ..., A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of $A_1, ..., A_r$. (I.e. semigroups have $|S| \leq exp$.)

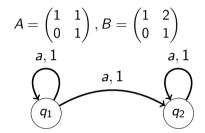
Developed a tool which is applicable for general semigroups.

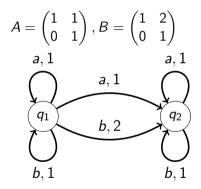
Theorem (Our Main Tool)

Given a number field K and semigroup $S = \langle A_1, ..., A_r \rangle \subseteq K^{n \times n}$, we can in PTIME compute an irreducible component decomposition of S over K.

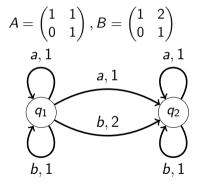
Rest of this talk: Explains irreducible components + theorems

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$



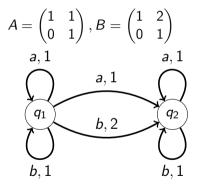


 $n \times n \leftrightarrow n$ states of a finite automaton.

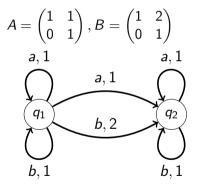


 $n \times n \leftrightarrow n$ states of a finite automaton.

 $r \text{ (number of matrices)} \leftrightarrow |\Sigma| = r$



- $n \times n \leftrightarrow n$ states of a finite automaton.
- $r \text{ (number of matrices)} \leftrightarrow |\Sigma| = r$
- $A_i \leftrightarrow \text{transition matrix}$ on letter a_i

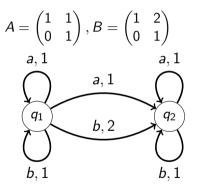


 $n \times n \leftrightarrow n$ states of a finite automaton.

 $r \text{ (number of matrices)} \leftrightarrow |\Sigma| = r$

 $A_i \leftrightarrow \text{transition matrix}$ on letter a_i

Multiplication $A_i \cdot A_j \leftrightarrow$ Composing letters



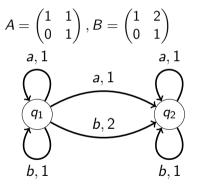
 $n \times n \leftrightarrow n$ states of a finite automaton.

 $r \text{ (number of matrices)} \leftrightarrow |\Sigma| = r$

 $A_i \leftrightarrow \text{transition matrix}$ on letter a_i

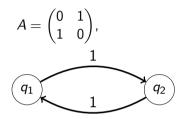
Multiplication $A_i \cdot A_j \leftrightarrow$ Composing letters

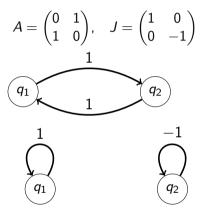
Does strongly-connected have a meaning for the semigroup?



Not immediately. If $P \in GL_n(K)$ is some base change, then

$$A=egin{pmatrix} 0&1\1&0 \end{pmatrix}$$
,

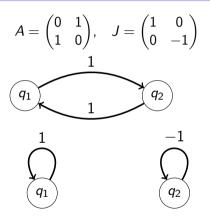




Not immediately. If $P \in GL_n(K)$ is some base change, then $S \simeq PSP^{-1}$, but S might be strongly-connected and PSP^{-1} is not.

Definition

S is stably-strongly-connected if every base change PSP^{-1} is strongly-connected.

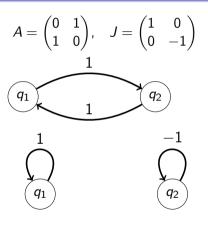


Not immediately. If $P \in GL_n(K)$ is some base change, then $S \simeq PSP^{-1}$, but S might be strongly-connected and PSP^{-1} is not.

Definition

S is stably-strongly-connected if every base change PSP^{-1} is strongly-connected.

Mainly for non-unary alphabet, otherwise Jordan normal form.



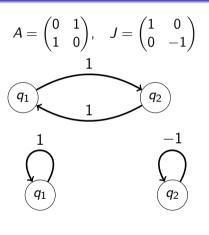
Not immediately. If $P \in GL_n(K)$ is some base change, then $S \simeq PSP^{-1}$, but S might be strongly-connected and PSP^{-1} is not.

Definition

S is stably-strongly-connected if every base change PSP^{-1} is strongly-connected.

Mainly for non-unary alphabet, otherwise Jordan normal form.

Remark: Stably-strongly-connected depends on the number field.



Not immediately. If $P \in GL_n(K)$ is some base change, then $S \simeq PSP^{-1}$, but S might be strongly-connected and PSP^{-1} is not.

Definition

S is stably-strongly-connected if every base change PSP^{-1} is strongly-connected.

Mainly for non-unary alphabet, otherwise Jordan normal form.

Remark: Stably-strongly-connected depends on the number field.

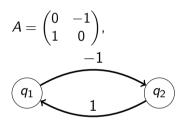
Not immediately. If $P \in GL_n(K)$ is some base change, then $S \simeq PSP^{-1}$, but S might be strongly-connected and PSP^{-1} is not.

Definition

S is stably-strongly-connected if every base change PSP^{-1} is strongly-connected.

Mainly for non-unary alphabet, otherwise Jordan normal form.

Remark: Stably-strongly-connected depends on the number field.



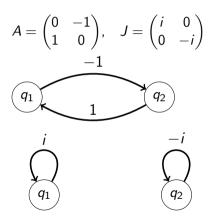
Not immediately. If $P \in GL_n(K)$ is some base change, then $S \simeq PSP^{-1}$, but S might be strongly-connected and PSP^{-1} is not.

Definition

S is stably-strongly-connected if every base change PSP^{-1} is strongly-connected.

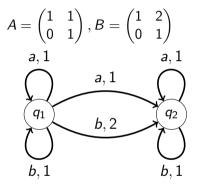
Mainly for non-unary alphabet, otherwise Jordan normal form.

Remark: Stably-strongly-connected depends on the number field.



Definition

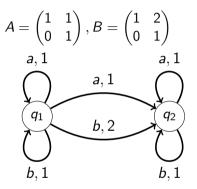
S is stably-strongly-connected if every base change PSP^{-1} is strongly-connected.



Definition

S is stably-strongly-connected if every base change PSP^{-1} is strongly-connected.

S is irreducible if there is no vector space $\{0\} \neq V \subsetneq \mathbb{Q}^n$ s.t. $S \cdot V \subseteq V$.



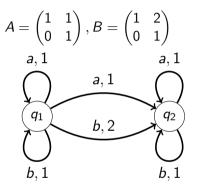
Definition

S is stably-strongly-connected if every base change PSP^{-1} is strongly-connected.

S is irreducible if there is no vector space $\{0\} \neq V \subsetneq \mathbb{Q}^n$ s.t. $S \cdot V \subseteq V$.

Lemma

Let S be a semigroup. T.F.A.E.:



Definition

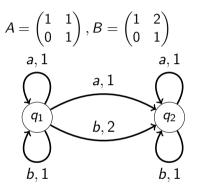
S is stably-strongly-connected if every base change PSP^{-1} is strongly-connected.

S is irreducible if there is no vector space $\{0\} \neq V \subsetneq \mathbb{Q}^n$ s.t. $S \cdot V \subseteq V$.

Lemma

Let S be a semigroup. T.F.A.E.:

• *S* is not stably-strongly-connected.



Definition

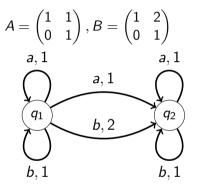
S is stably-strongly-connected if every base change PSP^{-1} is strongly-connected.

S is irreducible if there is no vector space $\{0\} \neq V \subsetneq \mathbb{Q}^n$ s.t. $S \cdot V \subseteq V$.

Lemma

Let S be a semigroup. T.F.A.E.:

- *S* is not stably-strongly-connected.
- **2** *S* is not irreducible.



Definition

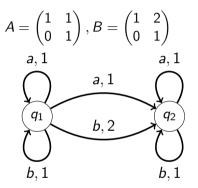
S is stably-strongly-connected if every base change PSP^{-1} is strongly-connected.

S is irreducible if there is no vector space $\{0\} \neq V \subsetneq \mathbb{Q}^n$ s.t. $S \cdot V \subseteq V$.

Lemma

Let S be a semigroup. T.F.A.E.:

- *S* is not stably-strongly-connected.
- **2** *S* is not irreducible.
- **③** ∃ $P \in GL_n(\mathbb{Q})$ s.t. all $A \in PSP^{-1}$ are block-upper-triangular with ≥ 2 blocks.



Definition

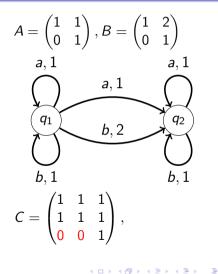
S is stably-strongly-connected if every base change PSP^{-1} is strongly-connected.

S is irreducible if there is no vector space $\{0\} \neq V \subsetneq \mathbb{Q}^n$ s.t. $S \cdot V \subseteq V$.

Lemma

Let S be a semigroup. T.F.A.E.:

- *S* is not stably-strongly-connected.
- **2** *S* is not irreducible.
- **③** ∃ $P \in GL_n(\mathbb{Q})$ s.t. all $A \in PSP^{-1}$ are block-upper-triangular with ≥ 2 blocks.



Definition

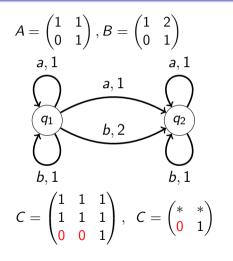
S is stably-strongly-connected if every base change PSP^{-1} is strongly-connected.

S is irreducible if there is no vector space $\{0\} \neq V \subsetneq \mathbb{Q}^n$ s.t. $S \cdot V \subseteq V$.

Lemma

Let S be a semigroup. T.F.A.E.:

- *S* is not stably-strongly-connected.
- **2** *S* is not irreducible.
- **③** ∃ $P \in GL_n(\mathbb{Q})$ s.t. all $A \in PSP^{-1}$ are block-upper-triangular with ≥ 2 blocks.



イロト 不同 とうせい イロト

Irreducible Component Decomposition

Definition

Let $S \subseteq \mathbb{Q}^{n \times n}$ be a semigroup.

Let $S \subseteq \mathbb{Q}^{n \times n}$ be a semigroup. A conjugated semigroup $S' = PSP^{-1}$ is an irreducible component decomposition (ICD)

Let $S \subseteq \mathbb{Q}^{n \times n}$ be a semigroup. A conjugated semigroup $S' = PSP^{-1}$ is an irreducible component decomposition (ICD) if all $A \in S'$ are block-upper-triangular with irreducible diagonal blocks.

Let $S \subseteq \mathbb{Q}^{n \times n}$ be a semigroup. A conjugated semigroup $S' = PSP^{-1}$ is an irreducible component decomposition (ICD) if all $A \in S'$ are block-upper-triangular with irreducible diagonal blocks.

Let $S \subseteq \mathbb{Q}^{n \times n}$ be a semigroup. A conjugated semigroup $S' = PSP^{-1}$ is an irreducible component decomposition (ICD) if all $A \in S'$ are block-upper-triangular with irreducible diagonal blocks.

Intuition: ICD~Jordan normal form for semigroups instead of single matrices.

Let $S \subseteq \mathbb{Q}^{n \times n}$ be a semigroup. A conjugated semigroup $S' = PSP^{-1}$ is an irreducible component decomposition (ICD) if all $A \in S'$ are block-upper-triangular with irreducible diagonal blocks.

Intuition: ICD~Jordan normal form for semigroups instead of single matrices.

Lemma

An ICD always exists.

$$\begin{pmatrix} * & * & \dots & * \\ 0 & * & \dots & * \\ \vdots & 0 & \ddots & * \\ 0 & \dots & 0 & * \end{pmatrix}$$

Let $S \subseteq \mathbb{Q}^{n \times n}$ be a semigroup. A conjugated semigroup $S' = PSP^{-1}$ is an irreducible component decomposition (ICD) if all $A \in S'$ are block-upper-triangular with irreducible diagonal blocks.

Intuition: ICD~Jordan normal form for semigroups instead of single matrices.

Lemma

An ICD always exists.

$$\begin{pmatrix} * & * & \dots & * \\ 0 & * & \dots & * \\ \vdots & 0 & \ddots & * \\ 0 & \dots & 0 & * \end{pmatrix}$$

Proof.

Let $S \subseteq \mathbb{Q}^{n \times n}$ be a semigroup. A conjugated semigroup $S' = PSP^{-1}$ is an irreducible component decomposition (ICD) if all $A \in S'$ are block-upper-triangular with irreducible diagonal blocks.

Intuition: ICD~Jordan normal form for semigroups instead of single matrices.

Lemma

An ICD always exists.

$$\begin{pmatrix} * & * & \dots & * \\ 0 & * & \dots & * \\ \vdots & 0 & \ddots & * \\ 0 & \dots & 0 & * \end{pmatrix}$$

Proof.

By induction on n. If S is irreducible, then S is an ICD.

Let $S \subseteq \mathbb{Q}^{n \times n}$ be a semigroup. A conjugated semigroup $S' = PSP^{-1}$ is an irreducible component decomposition (ICD) if all $A \in S'$ are block-upper-triangular with irreducible diagonal blocks.

Intuition: ICD~Jordan normal form for semigroups instead of single matrices.

Lemma

An ICD always exists.

$$\begin{pmatrix} * & * & \dots & * \\ 0 & * & \dots & * \\ \vdots & 0 & \ddots & * \\ 0 & \dots & 0 & * \end{pmatrix}$$

Proof.

By induction on *n*. If *S* is irreducible, then *S* is an ICD. If *S* is reducible, then let *V* be s.t. $S \cdot V \subseteq V$.

Let $S \subseteq \mathbb{Q}^{n \times n}$ be a semigroup. A conjugated semigroup $S' = PSP^{-1}$ is an irreducible component decomposition (ICD) if all $A \in S'$ are block-upper-triangular with irreducible diagonal blocks.

Intuition: ICD~Jordan normal form for semigroups instead of single matrices.

Lemma

An ICD always exists.

$$\begin{pmatrix} * & * & \dots & * \\ 0 & * & \dots & * \\ \vdots & 0 & \ddots & * \\ 0 & \dots & 0 & * \end{pmatrix}$$

Proof.

By induction on *n*. If *S* is irreducible, then *S* is an ICD. If *S* is reducible, then let *V* be s.t. $S \cdot V \subseteq V$. Decompose $S \mid_V$ and $S \mid_{V^{\perp}}$ recursively.

Reminder: Goal of This Talk

<ロ><合><合><き><き><き><き><き><き><き><き、 10/13

Theorem (This Talk)

If the semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r . (I.e. semigroups have $|S| \leq exp$.)

Developed a tool which is applicable for general semigroups.

Theorem (Our Main Tool)

Given a number field K and semigroup $S = \langle A_1, ..., A_r \rangle \subseteq K^{n \times n}$, we can in PTIME compute an irreducible component decomposition of S over K.

Theorem (This Talk)

If the semigroup $S = \langle A_1, ..., A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of $A_1, ..., A_r$. (I.e. semigroups have $|S| \leq exp$).

Theorem (This Talk)

If the semigroup $S = \langle A_1, ..., A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of $A_1, ..., A_r$. (I.e. semigroups have $|S| \leq exp$).

Step 1: W.I.o.g. $S = PSP^{-1}$ is in ICD.

Theorem (This Talk)

If the semigroup $S = \langle A_1, ..., A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of $A_1, ..., A_r$. (I.e. semigroups have $|S| \leq exp$).

Step 1: W.I.o.g. $S = PSP^{-1}$ is in ICD.

Theorem (This Talk)

If the semigroup $S = \langle A_1, ..., A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of $A_1, ..., A_r$. (I.e. semigroups have $|S| \leq exp$).

Step 1: W.I.o.g. $S = PSP^{-1}$ is in ICD.

Step 2+3: Separately deal with block-diagonal + above.

(*	*		*)
(* 0	*		*
:	0	·	*
0		0	*)

Theorem (This Talk)

If the semigroup $S = \langle A_1, ..., A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of $A_1, ..., A_r$. (I.e. semigroups have $|S| \leq exp$).

Step 1: W.I.o.g. $S = PSP^{-1}$ is in ICD.

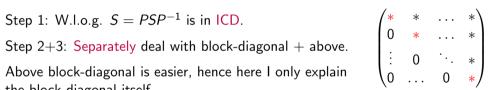
Step 2+3: Separately deal with block-diagonal + above.

(*	*		*)
0	*		*
(* 0 : 0	0	·	*
0/		0	*/

Theorem (This Talk)

If the semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r . (I.e. semigroups have |S| < exp).

Above block-diagonal is easier, hence here I only explain the block-diagonal itself.



Theorem (This Talk)

If the semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r . (I.e. semigroups have $|S| \le exp$).

Above block-diagonal is easier, hence here I only explain the block-diagonal itself.

Hence w.l.o.g. *S* is irreducible.

Theorem (This Talk)

If the semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$ is finite, then every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r . (I.e. semigroups have $|S| \le exp$).

Above block-diagonal is easier, hence here I only explain the block-diagonal itself.

Hence w.l.o.g. *S* is irreducible.

In other words: We spent a large amount of this talk reducing to irreducible semigroups.

< □ > < ⑦ > < ≧ > < ≧ > < ≧ > ≧ > ○ Q (~ 12 / 13

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

The technique is as follows:

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If • Matrix of T has polysize,

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

- Matrix of T has polysize,
- T is invertible,

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

- Matrix of T has polysize,
- T is invertible,

• and T(x) has polysize,

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

- Matrix of T has polysize,
- T is invertible,
- and T(x) has polysize,

イロン 不可と イヨン イヨン

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Proof.

$$T$$
 polysize $\Rightarrow T^{-1}$ polysize.

The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

- Matrix of T has polysize,
- T is invertible,
- and T(x) has polysize,

イロト 不得 とうせい イヨト

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Proof.

T polysize $\Rightarrow T^{-1}$ polysize. Hence the product $\mathbf{x} = T^{-1} \cdot T(\mathbf{x})$ has polysize.

The technique is as follows:

Lemma

Let
$$V, V'$$
 vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

- Matrix of T has polysize,
- T is invertible,
- and T(x) has polysize,

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

- Matrix of T has polysize,
- T is invertible,
- and T(x) has polysize,

イロン 不可と イヨン イヨン

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Therefore main difficulty: Finding the map T.

The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

- Matrix of T has polysize,
- T is invertible,
- and T(x) has polysize,

イロン 不可と イヨン イヨン

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Therefore main difficulty: Finding the map T. Every eigenvalue λ of $A \in S$ fulfills $\lambda = 0$ or $\lambda^q = 1$ for some $q \in \mathbb{N}$. The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

• Matrix of T has polysize,

イロト 不同 トイヨト イヨト

- T is invertible,
- and T(x) has polysize,

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Therefore main difficulty: Finding the map *T*. Every eigenvalue λ of $A \in S$ fulfills $\lambda = 0$ or $\lambda^q = 1$ for some $q \in \mathbb{N}$. Proof: From $|\{A, A^2, ...\}| < \infty$ we obtain $A^m = A^k$ for some m > k The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

• Matrix of T has polysize,

ヘロン 人間 とくほ とくほう

- T is invertible,
- and T(x) has polysize,

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Therefore main difficulty: Finding the map T. Every eigenvalue λ of $A \in S$ fulfills $\lambda = 0$ or $\lambda^q = 1$ for some $q \in \mathbb{N}$. Proof: From $|\{A, A^2, ...\}| < \infty$ we obtain $A^m = A^k$ for some m > k. Therefore $\lambda^m = \lambda^k$. The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

• Matrix of T has polysize,

イロン 不良 とうせい かけい

- T is invertible,
- and T(x) has polysize,

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Therefore main difficulty: Finding the map T. Every eigenvalue λ of $A \in S$ fulfills $\lambda = 0$ or $\lambda^q = 1$ for some $q \in \mathbb{N}$. Proof: From $|\{A, A^2, ...\}| < \infty$ we obtain $A^m = A^k$ for some m > k. Therefore $\lambda^m = \lambda^k$. Hence either $\lambda = 0$ or $\lambda^{m-k} = 1$. The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

- Matrix of T has polysize,
- T is invertible,
- and T(x) has polysize,

イロン 人間 とくほ とくほう

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Therefore main difficulty: Finding the map T. Every eigenvalue λ of $A \in S$ fulfills $\lambda = 0$ or $\lambda^q = 1$ for some $q \in \mathbb{N}$. The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

• Matrix of T has polysize,

イロト 不同 トイヨト イヨト

- T is invertible,
- and T(x) has polysize,

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Therefore main difficulty: Finding the map T. Every eigenvalue λ of $A \in S$ fulfills $\lambda = 0$ or $\lambda^q = 1$ for some $q \in \mathbb{N}$.

Remember that the trace is linear: $tr(A) := a_{11} + \dots + a_{nn} = \lambda_1 + \dots + \lambda_n$ The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

• Matrix of T has polysize,

イロン 不良 とうせい かけい

- T is invertible,
- and T(x) has polysize,

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Therefore main difficulty: Finding the map T. Every eigenvalue λ of $A \in S$ fulfills $\lambda = 0$ or $\lambda^q = 1$ for some $q \in \mathbb{N}$.

Remember that the trace is linear: $tr(A) := a_{11} + \dots + a_{nn} = \lambda_1 + \dots + \lambda_n$ Claim: $tr(A) \in \{-n, \dots, n\}$. The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

• Matrix of T has polysize,

イロン 不良 とうせい かけい

- T is invertible,
- and T(x) has polysize,

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Therefore main difficulty: Finding the map T. Every eigenvalue λ of $A \in S$ fulfills $\lambda = 0$ or $\lambda^q = 1$ for some $q \in \mathbb{N}$.

Remember that the trace is linear: $tr(A) := a_{11} + \cdots + a_{nn} = \lambda_1 + \cdots + \lambda_n$ Claim: $tr(A) \in \{-n, \dots, n\}$.

To show: $|tr(A)| \leq n$ and $tr(A) \in \mathbb{Q} \cap \overline{\mathbb{Z}}$.

The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

• Matrix of T has polysize,

イロン 不良 とうせい かけい

- T is invertible,
- and T(x) has polysize,

then **x** has polysize.

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Therefore main difficulty: Finding the map T. Every eigenvalue λ of $A \in S$ fulfills $\lambda = 0$ or $\lambda^q = 1$ for some $q \in \mathbb{N}$.

Remember that the trace is linear: $tr(A) := a_{11} + \dots + a_{nn} = \lambda_1 + \dots + \lambda_n$ Claim: $tr(A) \in \{-n, \dots, n\}$.

To show: $|tr(A)| \leq n$ and $tr(A) \in \mathbb{Q} \cap \overline{\mathbb{Z}}$. Obvious by the above. The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

• Matrix of T has polysize,

- T is invertible,
- and T(x) has polysize,

then **x** has polysize.

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Main difficulty: Finding the map T. $tr(A) \in \{-n, ..., n\}$ for all $A \in S$. The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

- Matrix of T has polysize,
- T is invertible,
- and T(x) has polysize,

ヘロン 人間 とくほ とくほう

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Main difficulty: Finding the map T. $tr(A) \in \{-n, ..., n\}$ for all $A \in S$.

Fix basis $B \subseteq S$ of VSp(S).

The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

- Matrix of T has polysize,
- T is invertible,
- and T(x) has polysize,

イロト 不得 とうせい イヨト

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Main difficulty: Finding the map T. $tr(A) \in \{-n, ..., n\}$ for all $A \in S$. Fix basis $B \subseteq S$ of VSp(S). $T: VSp(S) \rightarrow \mathbb{Q}^{|B|}$, The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

- Matrix of T has polysize,
- T is invertible,
- and T(x) has polysize,

then **x** has polysize.

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Main difficulty: Finding the map T. $tr(A) \in \{-n, ..., n\}$ for all $A \in S$. Fix basis $B \subseteq S$ of VSp(S). $T: VSp(S) \rightarrow \mathbb{Q}^{|B|}, A \mapsto (tr(A \cdot M))_{M \in B}$ The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

- Matrix of T has polysize,
- T is invertible,
- and T(x) has polysize,

then **x** has polysize.

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Main difficulty: Finding the map T. $tr(A) \in \{-n, ..., n\}$ for all $A \in S$.

Fix basis $B \subseteq S$ of VSp(S).

 $T: VSp(S) \rightarrow \mathbb{Q}^{|B|}, A \mapsto (tr(A \cdot M))_{M \in B}$ Linear: Since *tr* is linear. The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

• Matrix of T has polysize,

イロン 不良 とうせい かけい

- T is invertible,
- and T(x) has polysize,

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Main difficulty: Finding the map T. $tr(A) \in \{-n, ..., n\}$ for all $A \in S$.

Fix basis $B \subseteq S$ of VSp(S).

 $T: VSp(S) \to \mathbb{Q}^{|B|}, A \mapsto (tr(A \cdot M))_{M \in B}$ Linear: Since *tr* is linear.

T Polysize: Choose small basis B.

The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

• Matrix of T has polysize,

イロン 不良 とうせい かけい

- T is invertible,
- and T(x) has polysize,

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Main difficulty: Finding the map T. $tr(A) \in \{-n, ..., n\}$ for all $A \in S$.

Fix basis $B \subseteq S$ of VSp(S).

 $T: VSp(S) \rightarrow \mathbb{Q}^{|B|}, A \mapsto (tr(A \cdot M))_{M \in B}$ Linear: Since *tr* is linear.

T Polysize: Choose small basis B.

T invertible by irreducibility.

The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

• Matrix of T has polysize,

イロン 人間 とくほ とくほう

- T is invertible,
- and T(x) has polysize,

then **x** has polysize.

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Main difficulty: Finding the map T. $tr(A) \in \{-n, ..., n\}$ for all $A \in S$.

Fix basis $B \subseteq S$ of VSp(S).

 $T: VSp(S) \rightarrow \mathbb{Q}^{|B|}, A \mapsto (tr(A \cdot M))_{M \in B}$ Linear: Since *tr* is linear.

T Polysize: Choose small basis B.

T invertible by irreducibility. T(A) polysize: $\in \{-n, ..., n\}^{\leq n^2}$ The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

- Matrix of T has polysize,
- T is invertible,
- and T(x) has polysize,

イロン 不良 とうせい かけい

then **x** has polysize.

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

Main difficulty: Finding the map T. $tr(A) \in \{-n, ..., n\}$ for all $A \in S$.

Fix basis $B \subseteq S$ of VSp(S).

 $T: VSp(S) \rightarrow \mathbb{Q}^{|B|}, A \mapsto (tr(A \cdot M))_{M \in B}$ Linear: Since *tr* is linear.

T Polysize: Choose small basis B.

T invertible by irreducibility. T(A) polysize: $\in \{-n, ..., n\}^{\leq n^2}$

Hence we can apply the lemma.

The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

- Matrix of T has polysize,
- T is invertible,
- and T(x) has polysize,

ヘロン 人間 とくほど 人間 と

then **x** has polysize.

Theorem

In an irreducible finite semigroup $S = \langle A_1, \ldots, A_r \rangle \subseteq \mathbb{Q}^{n \times n}$, every matrix $A \in S$ has polynomial bitsize in terms of A_1, \ldots, A_r .

$$tr(A) \in \{-n, \ldots, n\}$$
 for all $A \in S$.

Fix basis $B \subseteq S$ of VSp(S).

$$T: VSp(S)
ightarrow \mathbb{Q}^{|B|}, A \mapsto (tr(A \cdot M))_{M \in B}$$

Linear: Since *tr* is linear.

T Polysize: Choose small basis B.

T invertible by irreducibility. *T*(*A*) polysize: $\in \{-n, ..., n\}^{\leq n^2}$ Hence we can apply the lemma. Thank you for your attention! The technique is as follows:

Lemma

Let V, V' vector spaces, let $T: V \rightarrow V'$ linear, $\mathbf{x} \in V$. If

- Matrix of T has polysize,
- T is invertible,
- and T(x) has polysize,

ヘロマ 人間マ ヘヨマ ヘヨマ