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x=0
y=0
while true do
Non-Det.Choice:
Option 1: x=2x-y-1; y=y-1
Option 2: x=2y-x+1; y=y+1
end while

For programs with only linear updates

x := Ax + b and no conditional
branching, all polynomial loop invariants
can be automatically synthesized.
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Matrix Semigroups

We can simulate states and constants using additional variables.

Therefore programs as before can be reduced to matrix vector multiplication
while true do
Non-Det.Choice:
Option 1: x = A;x
Option 2: ...
Option r: x = A,x
end while

Hence we study matrix semigroups, i.e. sets of the form

(A1,...,Ar) i ={Ajo---0A, |neNjje{l,...,r}}
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Theorem (Derksen, Jeandel, Koiran 2005)

Given invertible matrices A1, ..., A, € GL,(Q), the Zariski closure of
(A1,...,A,)/the optimal polynomial invariants can be computed.

Theorem (Hrushovski, Ouaknine, Pouly, Worrell, 2018)

Given not necessarily invertible matrices Ay, ..., A, € Q™" for some n, the
Zariski closure of (Ai,...,A;) can be computed.

Theorem (Nosan, Pouly, Shirmohammadi, Worrell 2022)

Given invertible matrices Ay, ..., A, € GL,(Q), the Zariski closure can be
computed in 7-EXPTIME.

Our goal is to reduce the complexity/generalize to semigroups.
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= . - = =




Subject + Context of This Talk

Theorem (This Talk)

If the semigroup S = (A1, ..., A;) C Q™" is finite, then every matrix A € S has
polynomial bitsize in terms of A1, ..., A,. (l.e. semigroups have |S| < exp.)

5/13



Subject + Context of This Talk

Theorem (This Talk)

If the semigroup S = (A1, ..., A;) C Q™" is finite, then every matrix A € S has
polynomial bitsize in terms of A1, ..., A,. (l.e. semigroups have |S| < exp.)

Theorem (Folklore)

If the group G = (Ay,...,A;) C GLy(Q) is finite, then |G| < 2" - nl.

5/13



Subject + Context of This Talk

Theorem (This Talk)

If the semigroup S = (A1, ..., A;) C Q™" is finite, then every matrix A € S has
polynomial bitsize in terms of A1, ..., A,. (l.e. semigroups have |S| < exp.)

Theorem (Folklore)
If the group G = (Ay,...,A;) C GLy(Q) is finite, then |G| < 2" - nl.

Theorem (Bumpus, Haase, Kiefer, Stoienescu, Tanner 2020)

If the semigroup S = (A1, ..., A,) is finite, then every element can be obtained
by an exponential length product.

5/13



Subject + Context of This Talk

Theorem (This Talk)

If the semigroup S = (A1, ..., A;) C Q™" is finite, then every matrix A € S has
polynomial bitsize in terms of A1, ..., A,. (l.e. semigroups have |S| < exp.)

Theorem (Folklore)
If the group G = (Ay,...,A;) C GLy(Q) is finite, then |G| < 2" - nl.

Theorem (Bumpus, Haase, Kiefer, Stoienescu, Tanner 2020)

If the semigroup S = (A1, ..., A,) is finite, then every element can be obtained
by an exponential length product. (l.e. semigroups have |S| < 2-exp.)

5/13



Subject + Context of This Talk

Theorem (This Talk)

If the semigroup S = (A1, ..., A;) C Q™" is finite, then every matrix A € S has
polynomial bitsize in terms of A1, ..., A,. (l.e. semigroups have |S| < exp.)

5/13



Subject + Context of This Talk

Theorem (This Talk)

If the semigroup S = (A1, ..., A;) C Q™" is finite, then every matrix A € S has
polynomial bitsize in terms of A1, ..., A,. (l.e. semigroups have |S| < exp.)

Developed a tool which is applicable for general semigroups.

5/13



Subject + Context of This Talk

Theorem (This Talk)

If the semigroup S = (A1, ..., A;) C Q™" is finite, then every matrix A € S has
polynomial bitsize in terms of A1, ..., A,. (l.e. semigroups have |S| < exp.)

Developed a tool which is applicable for general semigroups.

Theorem (Our Main Tool)

Given a number field K and semigroup S = (A1,...,A;) C K™", we can in
PTIME compute an irreducible component decomposition of S over K.

5/13



Subject + Context of This Talk

Theorem (This Talk)

If the semigroup S = (A1, ..., A;) C Q™" is finite, then every matrix A € S has
polynomial bitsize in terms of A1, ..., A,. (l.e. semigroups have |S| < exp.)

Developed a tool which is applicable for general semigroups.

Theorem (Our Main Tool)

Given a number field K and semigroup S = (A1,...,A;) C K™", we can in
PTIME compute an irreducible component decomposition of S over K.

Rest of this talk: Explains irreducible components 4+ theorems
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conjugated semigroup S’ = PSP~ ! is an
irreducible component decomposition (ICD)
if all A€ S’ are block-upper-triangular with
irreducible diagonal blocks.

By induction on n.
If S is irreducible, then S is an ICD.
If S is reducible, then let V be s.t.
SV C V. Decompose S |y and

S |yL recursively. O
An ICD always exists.
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polynomial bitsize in terms of A1, ..., A,. (l.e. semigroups have |S| < exp).
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0 = *
Step 2+3: Separately deal with block-diagonal + above.
0 .%
Above block-diagonal is easier, hence here | only explain 0 ... 0 =«

the block-diagonal itself.
Hence w.l.o.g. S is irreducible.

In other words: We spent a large amount of this talk
reducing to irreducible semigroups.
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Thank you for your attention!
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