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The Skolem Problem

What do these sequences have in common?

The Fibonacci numbers ⟨0, 1, 1, 2, 3, 5, 8, . . .⟩
⟨p(1), p(2), p(3), p(4), . . .⟩
⟨cos θ, cos 2θ, cos 3θ, cos 4θ, . . .⟩

A linear recurrence sequence (LRS) is a sequence of integers
⟨u0, u1, u2, . . .⟩ such that there are constants a1, . . . , ak and
∀n ≥ 0 : un+k = a1un+k−1 + a2un+k−2 + . . .+ akun.

Problem SKOLEM (1934)

Instance: An LRS ⟨u0, u1, u2, . . .⟩
Question: Does ∃n ≥ 0 such that un = 0?
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Quick Quiz: two ‘simple’ problems

Given two automata A and B, is there some ‘word-length’ n
such that A and B accept exactly the same words of length n?

DECIDABLE (in fact NEXPTIME-COMPLETE)

Given two automata A and B, is there some ‘word-length’ n
such that A and B accept exactly the same number of words
of length n?

SKOLEM-COMPLETE
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Some other application areas

The Skolem Problem (and related questions) arise in many other
areas (often in hardness results), e.g.:

theoretical biology (analysis of L-systems)

software verification / program analysis

dynamical systems

differential privacy

(weighted) automata and games

analysis of stochastic systems

control theory

quantum computing

statistical physics

formal power series

combinatorics

. . .
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L-Systems (after Aristid Lindenmayer, late 1960s)



Automata and power series



The Skolem-Mahler-Lech Theorem

Fact: any LRS can be effectively decomposed into finitely many
non-degenerate LRS.

Theorem (Skolem 1934; Mahler 1935, 1956; Lech 1953)

The set of zeros {n ∈ N : un = 0} of a non-degenerate LRS
⟨u0, u1, u2, . . .⟩ is finite.

Decidability of the Skolem Problem is equivalent to being able
to compute the finite set of zeros of any given non-degenerate
LRS

Unfortunately, all known proofs of the Skolem-Mahler-Lech
Theorem make use of non-constructive p-adic techniques
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Exponential-polynomial closed forms for LRS

Let ⟨un⟩∞n=0 satisfy the recurrence

un+k = a1un+k−1 + a2un+k−2 + . . .+ akun

The characteristic polynomial of ⟨un⟩ is

χ(x) = xk − a1x
k−1 − a2x

k−2 − . . .− ak

Let the characteristic roots be λ1, . . . , λm ∈ C.

Then one has the exponential-polynomial closed form

un =
m∑
j=1

Qj(n)λ
n
j

where the Qj are polynomials with (complex) algebraic-number
coefficients.
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Special case: simple linear recurrence sequences

An LRS is simple if its characteristic roots are simple (non-repeated)

e.g., the Fibonacci sequence:

un =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

Equivalently, an LRS is simple if all Qj are constant

( in un =
m∑
j=1

Qj(n)λ
n
j )

The “vast majority” of LRS are simple. . .

Simple LRS correspond precisely to diagonalisable matrices



Special case: simple linear recurrence sequences

An LRS is simple if its characteristic roots are simple (non-repeated)

e.g., the Fibonacci sequence:

un =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

Equivalently, an LRS is simple if all Qj are constant

( in un =
m∑
j=1

Qj(n)λ
n
j )

The “vast majority” of LRS are simple. . .

Simple LRS correspond precisely to diagonalisable matrices



Special case: simple linear recurrence sequences

An LRS is simple if its characteristic roots are simple (non-repeated)

e.g., the Fibonacci sequence:

un =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

Equivalently, an LRS is simple if all Qj are constant

( in un =
m∑
j=1

Qj(n)λ
n
j )

The “vast majority” of LRS are simple. . .

Simple LRS correspond precisely to diagonalisable matrices



Special case: simple linear recurrence sequences

An LRS is simple if its characteristic roots are simple (non-repeated)

e.g., the Fibonacci sequence:

un =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

Equivalently, an LRS is simple if all Qj are constant

( in un =
m∑
j=1

Qj(n)λ
n
j )

The “vast majority” of LRS are simple. . .

Simple LRS correspond precisely to diagonalisable matrices



Special case: simple linear recurrence sequences

An LRS is simple if its characteristic roots are simple (non-repeated)

e.g., the Fibonacci sequence:

un =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−

√
5

2

)n

Equivalently, an LRS is simple if all Qj are constant

( in un =
m∑
j=1

Qj(n)λ
n
j )

The “vast majority” of LRS are simple. . .

Simple LRS correspond precisely to diagonalisable matrices



The Skolem Problem at low orders

Theorem (Mignotte, Shorey, Tijdeman 1984; Vereshchagin 1985)

For LRS of order ≤ 4, SKOLEM is decidable.

Critical ingredient is Baker’s theorem on
linear forms in logarithms, which earned
Baker the Fields Medal in 1970.

Note: even for simple LRS, decidability at order 5 is not
known!
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Conditional results

Many problems in mathematics and computer science are solvable
subject to various standard conjectures, e.g.:

Miller’s polynomial-time algorithm for primality testing, whose
correctness relies on the Riemann Hypothesis (Miller 1976)

Security of RSA (and pretty much all of modern electronic
commerce!), based on the conjecture that factoring is not
polynomial time (Rivest, Shamir, Adleman 1977)

Decidability of the first-order theory of real arithmetic with
exponentiation, subject to Schanuel’s Conjecture (Macintyre
& Wilkie 1996)

Many, many results subject to P ̸=NP, or ETH, etc...



Conditional results

Many problems in mathematics and computer science are solvable
subject to various standard conjectures, e.g.:

Miller’s polynomial-time algorithm for primality testing, whose
correctness relies on the Riemann Hypothesis (Miller 1976)

Security of RSA (and pretty much all of modern electronic
commerce!), based on the conjecture that factoring is not
polynomial time (Rivest, Shamir, Adleman 1977)

Decidability of the first-order theory of real arithmetic with
exponentiation, subject to Schanuel’s Conjecture (Macintyre
& Wilkie 1996)

Many, many results subject to P ̸=NP, or ETH, etc...



Conditional results

Many problems in mathematics and computer science are solvable
subject to various standard conjectures, e.g.:

Miller’s polynomial-time algorithm for primality testing, whose
correctness relies on the Riemann Hypothesis (Miller 1976)

Security of RSA (and pretty much all of modern electronic
commerce!), based on the conjecture that factoring is not
polynomial time (Rivest, Shamir, Adleman 1977)

Decidability of the first-order theory of real arithmetic with
exponentiation, subject to Schanuel’s Conjecture (Macintyre
& Wilkie 1996)

Many, many results subject to P ̸=NP, or ETH, etc...



Conditional results

Many problems in mathematics and computer science are solvable
subject to various standard conjectures, e.g.:

Miller’s polynomial-time algorithm for primality testing, whose
correctness relies on the Riemann Hypothesis (Miller 1976)

Security of RSA (and pretty much all of modern electronic
commerce!), based on the conjecture that factoring is not
polynomial time (Rivest, Shamir, Adleman 1977)

Decidability of the first-order theory of real arithmetic with
exponentiation, subject to Schanuel’s Conjecture (Macintyre
& Wilkie 1996)

Many, many results subject to P ̸=NP, or ETH, etc...



Conditional results

Many problems in mathematics and computer science are solvable
subject to various standard conjectures, e.g.:

Miller’s polynomial-time algorithm for primality testing, whose
correctness relies on the Riemann Hypothesis (Miller 1976)

Security of RSA (and pretty much all of modern electronic
commerce!), based on the conjecture that factoring is not
polynomial time (Rivest, Shamir, Adleman 1977)

Decidability of the first-order theory of real arithmetic with
exponentiation, subject to Schanuel’s Conjecture (Macintyre
& Wilkie 1996)

Many, many results subject to P ̸=NP, or ETH, etc...



The Skolem Problem for simple LRS
(conditional on classical conjectures in number theory)

Theorem (Bilu, Luca, Nieuwveld, O., Purser, Worrell, MFCS 2022)

There is an algorithm which takes as input a simple,
non-degenerate LRS and produces its (finite) set of zeros.
Termination is guaranteed assuming the p-adic Schanuel
Conjecture and the Exponential Local-Global Principle.

The two conjectures are only needed to prove termination,
not correctness

In other words, the algorithm also produces an independent
(conjecture-free) correctness certificate

Try our online tool skolem !
https://skolem.mpi-sws.org/
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Universal Skolem Sets

Definition

An infinite set S ⊆ N is a Universal Skolem Set if there is an
effective procedure that inputs a non-degenerate integer LRS ⟨un⟩
and outputs the set {n ∈ S : un = 0}.

Equivalently, S ⊆ N is a Universal Skolem Set if, given any
non-degenerate LRS, it is decidable whether that LRS has
a zero in S.

Decidability of the Skolem Problem is equivalent to proving
that N is a Universal Skolem Set

In fact, it would suffice to show the existence of a Universal
Skolem Set containing some infinite arithmetic progression!
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Universal Skolem Sets exist!

Theorem (Luca, O., Worrell, LICS 2021)

Define f : N+ → N by f (t) = ⌊
√
log t⌋. Write s0 = 1 and,

inductively, set st := t! + sf (t) for t ≥ 1.
Then S := {st : t ∈ N} is a Universal Skolem Set.

We have

S = {1, 1! + 1, 2! + 1, 3! + 1! + 1, 4! + 1! + 1, 5! + 1! + 1, . . .}
= {1, 2, 3, 8, 26, 122, 722, 5042, 40322, 362882, 3628802, . . .}
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Skolem-Universality of S

Define f : N+ → N by f (t) = ⌊
√
log t⌋. Write s0 = 1 and,

inductively, set st := t! + sf (t) for t ≥ 1.

Proposition

Given ⟨un⟩, and any prime p such that p ∤ ∆, then for all t, ℓ ∈ N
with t ≥ pd , ut!+ℓ ≡ uℓ (mod p).
(Here ∆ is the discriminant of the splitting field of the
characteristic polynomial of ⟨un⟩, and d is its degree over Q.)

(Proof sketch) To see this, write un =
∑m

j=1Qj(n)λ
n
j .

Recall Fermat’s Little Theorem: if p ∤ a, then ap−1 ≡ 1 (mod p).
By a corresponding version for algebraic integers,

λt!
j = (λph−1

j )R ≡ 1R ≡ 1 (mod p) .

So ut!+ℓ =
∑m

j=1Qj(t! + ℓ)λt!+ℓ
j ≡

∑m
j=1Qj(ℓ)λ

ℓ
j = uℓ (mod p).
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Define f : N+ → N by f (t) = ⌊
√
log t⌋. Write s0 = 1 and,

inductively, set st := t! + sf (t) for t ≥ 1.

In particular, if ust = ut!+sf (t) = 0, then

usf (t) ≡ 0 (mod P) , where P =
∏

p prime
pd≤t
p∤∆

p .

One can show that, for t sufficiently large, P > usf (t) . Combining:

For t large enough, if ust = 0, then usf (t) = 0.

Finally, find N sufficiently large and such that ⟨un⟩ has no zeros in
the interval [sN , sL], where L is the smallest integer such that
f (L) = N.

Then for any t ≥ N, ust ̸= 0.
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How dense is S?

Recall S = {1, 2, 3, 8, 26, 122, 722, 5042, 40322, 362882, . . .}

Unfortunately, S has density zero:

|S ∩ {1, . . . , n}| ≈ log n

log log n
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Exponential Diophantine equations in multiple variables

Theorem (after Schlickewei and Schmidt, 2000)

There is an explicit upper bound on the number of
‘non-overlapping’ solutions of the equation

m∑
j=1

Qj(y)α
x
j λ

y
j = 0

in integers x , y ∈ N.

(Here αj and λj are complex algebraic numbers, and the Qj are
polynomials with complex algebraic-number coefficients.)

This is in fact a deep generalisation of the Skolem-Mahler-Lech
Theorem
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A denser Universal Skolem Set

Given positive integer parameter X , define

A(X ) :=
[
log2 X ,

√
logX

]
and B(X ) :=

[
logX√
log3 X

,
2 logX√
log3 X

]

A representation of n ∈ [X , 2X ] is a triple (P, q, b) such that
n = Pq + b, P and q are prime, q ∈ A(X ), and b ∈ B(X ).
Let r(n) be number of representations of n.

Define S(X ) := {n ∈ [X , 2X ] : r(n) > log4 X} and

S :=
⋃
k∈N

S(2k)

Theorem (Luca, Maynard, Noubissie, O., Worrell, 2023)

S is a Universal Skolem Set of strictly positive lower density.
Moreover, assuming the Bateman-Horn Conjecture, S has density
exactly 1.
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S has strictly positive lower density

Theorem (Luca, O., Worrell, MFCS 2022)

S has strictly positive lower density.

Technical combinatorial argument, involving two key ingredients:

Sieve techniques, esp. the Selberg upper-bound sieve for linear
forms

the “moment method” together with a Cauchy-Schwarz
argument

Calculations show we can obtain unconditional density at least 1/2.
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The Bateman-Horn Conjecture

It is a central, unifying, far-reaching statement about the
distribution of prime numbers

It implies many known results, such as the prime number
theorem and the Green–Tao theorem, along with many
famous conjectures, such the twin prime conjecture and
Landau’s conjecture

It has been described as

“ranking among the Riemann hypothesis and abc-
conjecture as one of the most important and pivotal un-
proven conjectures in number theory”





S is a Universal Skolem Set

(Proof ingredient) Write un =
∑m

j=1Qj(n)λ
n
j = 0, and let n have

representation n = Pq + b.

Then

0 =
m∑
j=1

Qj(Pq + b)λPq+b
j =

m∑
j=1

Qj(Pq + b)
(
λP
j

)q
λb
j

≡
m∑
j=1

Qj(b)σ(λj)
qλb

j (mod p)

for p a prime ideal above P and σ a Frobenius automorphism.

It follows that P | N
(∑m

j=1Qj(b)σ(λj)
qλb

j

)
.

But q and b are ‘small’, hence N
(∑m

j=1Qj(b)σ(λj)
qλb

j

)
is also

‘small’. Thus for n sufficiently large, P too will be large, and in

particular P > N
(∑m

j=1Qj(b)σ(λj)
qλb

j

)
, whence

m∑
j=1

Qj(b)σ(λj)
qλb

j = 0 .
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‘small’. Thus for n sufficiently large, P too will be large, and in

particular P > N
(∑m

j=1Qj(b)σ(λj)
qλb

j

)
, whence

m∑
j=1

Qj(b)σ(λj)
qλb

j = 0 .



S is a Universal Skolem Set

We have that, for n large enough, if un = 0 and n has
representation n = Pq + b, then

m∑
j=1

Qj(b)σ(λj)
qλb

j = 0 (1)

Now recall:

Theorem (after Schlickewei and Schmidt, 2000)

There is an explicit upper bound on the number of
‘non-overlapping’ solutions of the equation

∑m
j=1Qj(y)α

x
j λ

y
j = 0

in integers x , y ∈ N.

Each representation (P, q, b) of n gives rise to a solution (q, b) of
the companion equation (1) above.
As the number of representations of n tends to infinity, but the
number of solutions to the companion equation is explicitly
bounded, this yields an effective upper bound on n ∈ S such that
un = 0.
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Outlook

Universal Skolem Sets are a radically new line of attack on the
Skolem Problem

Three critical directions:

Can one attain density one unconditionally?

Is there a construction yielding a Universal Skolem Set
containing some infinite arithmetic progression?

⇒ this would solve the Skolem Problem!

Can these ideas be applied to other problems, such as
Positivity or Ultimate Positivity, etc.?
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“. . . on something like equal terms. . . ”
[with apologies to G. H. Hardy]


