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The p-adic order of an integer

Let p be a prime. For a nonzero integer n we write

νp(n) = a where pa | n but pa+1 - n.

Example

When n = 12 = 22 × 3, we have

ν2(12) = 2, ν3(12) = 1 and νp(12) = 0 for primes p ≥ 5.
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The p-adic order of Fibonacci numbers

The Fibonacci sequence {Fn}n≥0 is given by

F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for all n ≥ 0.

Is there a formula for νp(Fn)? Yes, there is.
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Let z(p) be the index of appearance of p in the Fibonacci
sequence. This is the smallest positive integer k such that

p | Fk .

Then, the following holds.

Theorem
If p is odd then:

νp(Fn) =

{
0 if n 6≡ 0 (mod z(p));

νp(Fz(p)) + νp(n/z(p)) if n ≡ 0 (mod z(p)).

When p = 2, z(2) = 3, and for n = 3k we have

ν2(F3k ) =

{
1 if k ≡ 1 (mod 2);

2 + ν2(k) if k ≡ 0 (mod 2).
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The Tribonacci sequence

The Tribonacci sequence {Tn}n∈Z is defined by the recurrence

T (0) = 0, T (1) = T (2) = 1,
T (n + 3) = T (n + 2) + T (n + 1) + T (n) for all n ∈ Z.

Is there a formula for νp(Tn)? The answer is yes for p = 2.
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T. Lengyel D. Marques
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The 2-adic valuation of Tribonacci numbers

In 2014, Lengyel and Marques proved the following formula
concerning ν2(Tn):

Theorem
For n ≥ 1, we have

ν2(Tn) =



0, if n ≡ 1,2 (mod 4);
1, if n ≡ 3,11 (mod 16);
2, if n ≡ 4,8 (mod 16);
3, if n ≡ 7 (mod 16);

ν2(n)− 1, if n ≡ 0 (mod 16);
ν2(n + 4)− 1, if n ≡ 12 (mod 16);
ν2(n + 17) + 1, if n ≡ 15 (mod 32);
ν2(n + 1) + 1, if n ≡ 31 (mod 32).
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The Lengyel, Marques conjecture

Encouraged by their result for the prime p = 2, they set forward
a conjecture predicting that such formulas should hold for
νp(Tn) for every prime p. More precisely, here is their
conjecture.

Conjecture
(LM) Let p be prime.There exists a positive integer Q such that
for every i ∈ {0,1, . . . ,Q − 1} one of the following holds:
(C) There exists κi ∈ Z≥0 such that for all but finitely many

n ∈ Z satisfying n ≡ i (mod Q) we have νp(T (n)) = κi .
(L) There exist ai ∈ Z, κi ∈ Z, µi ∈ Z>0 satisfying

νp(ai − i) ≥ νp(Q), (1)

such that for all but finitely many n ≡ i (mod Q) we have

νp(T (n)) = κi + µiνp(n − ai). (2)
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Informally, the conjecture predicts that
in the case (C) (that is, “constant”) νp(T (n)) is a constant
function on the entire residue class n ≡ i (mod Q) with
finitely many n removed;
in the case (L) (“linear”) it is a linear function of νp(n − ai).
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The 3-adic valuation of the Tribonacci numbers

Already the case p = 3 looks encouraging.

Theorem

For n ≥ 1, we have

ν3(Tn) =



0, if n 6≡ 0,7,9,12 (mod 13);
1, if n ≡ 7 (mod 13);

ν3(n) + 2, if n ≡ 0 (mod 13);
ν3(n + 1) + 2, if n ≡ 12 (mod 13);

4, if n ≡ 9 (mod 39);
ν3(n + 17) + 4, if n ≡ 22 (mod 39);
ν3(n + 4) + 4, if n ≡ 35 (mod 39).
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A parametric set of counterexamples

However, the following theorem shows that Conjecture LM fails
for infinitely many primes.

Theorem

There is an infinite seta of prime numbers congruent to
2 (mod 3) such that for every prime p from this set the following
holds.

1 For each n ∈ Z satisfying n ≡ 1/3 (mod p − 1) we have

νp(T (n)) ≥ νp(n − 1/3).

2 For each n ∈ Z with n ≡ −5/3 (mod p − 1) we have

νp(T (n)) ≥ νp(n + 5/3).

aThis set of primes is not only infinite, but is of relative density 1/12 in the
set of all primes.
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Why is the above theorem a counter-example to the conjecture?

Clearly, Theorem 6 contradicts Conjecture LM. Indeed, let p be
as in the theorem, and let (nk )k≥1 be a sequence of integers
satisfying

nk ≡ 1/3 (mod (p − 1)pk ).

If Conjecture LM is true for this p then for some
i ∈ {0, . . . ,Q − 1} the residue class i (mod Q) contains
infinitely many nk . Since

νp(nk − 1/3)→∞,

we have νp(T (n))→∞. Hence for this i we must have
option (L) of Conjecture LM:

νp(T (nk )) = κi + µiνp(nk − ai).

Moreover, we must have νp(nk − ai)→∞ as well. But, since
ai ∈ Z, we have ai 6= 1/3, which implies that νp(nk − 1/3) and
νp(nk − ai) cannot both tend to infinity.
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Modifying the conjecture?

One may still hope to rescue Conjecture LM by allowing ai to
be rational numbers.

Conjecture
(RLM) Let p be a prime number. There exists a positive
integer Q such that for every i ∈ {0,1, . . . ,Q − 1} we have one
of the following two options.
(C) There exists κi ∈ Z≥0 such that for all but finitely many

n ∈ Z satisfying n ≡ i (mod Q) we have νp(T (n)) = κi .
(L) There exist ai ∈ Q, κi ∈ Z, µi ∈ Z>0 satisfying

νp(ai − i) ≥ νp(Q),

such that for all but finitely many n ∈ Z satisfying
n ≡ i (mod Q) we have

νp(T (n)) = κi + µiνp(n − ai).
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Even the modified conjecture fails sometimes

However, even this weaker conjecture fails for many primes.

Theorem

(i) Conjecture LM fails for p ∈ [5,599]\{11,83,103,163,397}.
(ii) Conjecture LM holds for p = 83,397 in the form

νp(Tn) =

{
νp(n − c) + 1, n ≡ c ∈ ZZ(T ) (mod Qp);

0 otherwise,

with
ZZ(T ) = {0,−1,−4,−17},

with Q83 = 287 and Q397 = 132.

Our method does not handle the prime p = 11. As for
p ∈ {103,163}, our method failed to decide whether
Conjecture LM holds.
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Theorem

(i) Conjecture RLM fails for p ∈ [5,599], except for

{11,47,53,83,103,163,269,397,401,419,499,587}.

(ii) Conjecture RLM holds for p = 269,401,419,499,587 in
the form

νp(Tn) =

{
νp(n − c) + 1, n ≡ c ∈ ZQ(T ) (mod Qp),

0, otherwise,

where

ZQ(T ) = {0,−1,−4,−17,1/3,−5/3};

with Q269 = 268, Q401 = 400, Q419 = 418, Q499 = 166 and
Q587 = 293.

For p = 47,53,103,163, we failed to decide if Conjecture RLM
holds.
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The initial purpose of our paper was to provide a method to
decide for which primes p Conjectures LM and RLM hold and
for which they fail. As seen above, in some cases our method is
unable to make the desired decision. When the method works
and decides that the conjecture holds, it also determines the
parameters Q and (ai , µi , κi) for those i = {0, . . . ,Q − 1} for
which option (L) takes place.

Florian Luca Twisted rational zeros of linear recurrences



The Binet formula

Let
Λ = {λ1, λ2, λ3} ⊂ Q

be the set of roots of the polynomial

P(X ) = X 3 − X 2 − X − 1.

For λ ∈ Λ define

cλ =
λ

P ′(λ)
=

λ

3λ2 − 2λ− 1
.

For n ∈ Z, the Tribonacci number

T (n) =
∑
λ∈Λ

cλλn for all n ∈ Z.
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Rational zeros of the Tribonacci sequence

The following is a result of Mignotte and Tzanakis of 1991.

Theorem
If Tn = 0 then

n ∈ ZZ(T ) = {0,−17,−4,−1}.

It turns out that in addition to the above zeros, the Tribonacci
sequence also “vanishes” at some non-integral rational
numbers.
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Proposition
For some definition of the cubic roots

λ1/3 (λ ∈ Λ) (3)

we have ∑
λ∈Λ

cλλ1/3 = 0. (4)

Similarly, for some definition of the cubic roots (3) we have∑
λ∈Λ

cλλ−5/3 = 0.
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Proof. Consider the polynomial

F (X1,X2,X3) = X 3
1 + X 3

2 + X 3
3 − 3X1X2X3 ∈ Z[X1,X2,X3].

Write again Λ = {λ1, λ2, λ3}. Define somehow the cubic roots
λ

1/3
1 , λ

1/3
2 and set λ1/3

3 = (λ
1/3
1 λ

1/3
2 )−1. Now define

αi = cλiλ
1/3
i , βi = cλiλ

−5/3
i (i = 1,2,3).

A direct verification shows that

F (α1, α2, α3) =
∑
λ∈Λ

c3
λλ− 3

∏
λ∈Λ

cλ = 0,

and, similarly,
F (β1, β2, β3) = 0.

Since F (X1,X2,X3) factors as

F (X1,X2,X3) = (X1 + X2 + X3)(X1 + ζX2 + ζ̄X3)(X1 + ζ̄X2 + ζX3),

where ζ, ζ̄ are the primitive cubic roots of unity, the result
follows.
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Call r ∈ Q a rational zero of T if for some definition of the
rational powers

λr
1, λr

2, λr
3

we have
3∑

i=1

cλiλ
r
i = 0.

More generally, call r ∈ Q a twisted rational zero of T if for
some definition of the rational powers

λr
1, λr

2, λr
3

and for some roots of unity ξ1, ξ2, ξ3, we have

3∑
i=1

ξicλiλ
r
i = 0.
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We denote ZQ(T ) the set of twisted rational zeros of T . Clearly,
ZZ(T ) ⊂ ZQ(T ) and 1/3,−5/3 ∈ ZQ(T ). It turns out that T has
no other twisted rational zeros.

Theorem

We have

QZ(T ) = ZZ(T ) ∪ {1/3,−5/3} = {0,−1,−4,−17,1/3,−5/3}.

Moreover, if r ∈ QQ(T ) and the powers λr
1, λ

r
2, λ

r
3 are suitably

defined, then for the roots of unity ξ1, ξ2, ξ3 satisfying

3∑
i=1

ξicλiλ
r
i = 0,

we have ξ1 = ξ2 = ξ3.
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Proof

Let us fix notations. We put

x = n/q, gcd(n,q) = 1, q ≥ 2.

Any two determinations of λ1/q
1 differ by a root of unity which

can be incorporated into ζ1. So, we pick λ1/q
1 to be real. Let d

be the degree of λ1/q
1 . That is, d is the degree of the irreducible

factor of
X 3q − X 2q − X q − 1

having λ1/q
1 as a root. Let e, f be the number of conjugates of

λ
1/q
1 lying on the circles

|z| = λ
1/q
1 and |z| = λ

−1/2q
1 ,

respectively. Then e + f = d and by the Viéte relations

λ
e/q
1 λ

−f/2q
1 = 1,

so f = 2e. Thus, e = d/3.
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Next we write λ1/q
2 for a fixed algebraic conjugate of λ1/q

1 and
λ

1/q
3 for its complex conjugate. Then

λ
1/q
1 λ

1/q
2 λ

1/q
3 = λ

1/q
1 |λ2|2/q = 1.

We divide across by ζ1 and have

c1λ
n/q
1 + c2λ

n/q
2 η + c3λ

n/q
3 η′ = 0.

We show that η = η′. For this we subtract the above relation
from

c1λ
n/q
1 + c2λ

n/q
2 η + c3λ

n/q
3 η ∈ R

getting
(η′ − η)c3λ

n/q
3 ∈ R.

Assuming η′ − η 6= 0, we can conjugate the above relation and
manipulate these relations to get

(c2λ
n/q
2 )/(c3λ

n/q
3 ) = −η′/η,

so c2 and c3 are associated, which is false.
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Next,
c1λ

n/q
1 + c2λ

n/q
2 η + c3λ

n/q
3 η−1 = 0,

which can be written as

η2 + (c1/c2)(λ2/λ1)n/qη + (c3/c2)(λ3/λ2)n/q = 0.

This shows that η is at most quadratic over K, but in fact it is in
K. Thus, given λ1/q

2 , the number η is uniquely determined.
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Next let λ1/q
1 ηi , ηi = e2πi`i/q for i = 1, . . . ,e be conjugates of

λ
1/q
1 for i = 1, . . . ,e, with `1 = 0. Let σi take

λ
1/q
1 to λ

1/q
1 ζi .

Assume it takes

λ
1/q
2 to λ

1/q
2+je

2πimi/q,

λ
1/q
3 to λ

1/q
3−je

2πini/q,

where j ∈ {0,1}. Assume j = 0 (the other case is similar).
Assume further that σi(η) = ηai . Applying σi we get

c1λ
n/q
1 e2πi`i n/q + c2λ

n/2
2 e2πimi n/qηai + c3λ

n/q
3 e2πini n/qη−ai = 0.

We thus get

c1λ
n/q
1 + c2λ

n/q
2 ηai e2πi(mi−`i )n/q + c3λ

n/q
3 e2πi(ni−`i )n/qη−ai = 0.

From the unicity of η we get

e2πi(mi−`i )n/qηai = η and e2πi(ni−`i )n/qη−ai = η−1.
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We thus get

e2πi(mi +ni−2`i )n/q = 1, so e2πi(3n`i )/q = e2πi(`i +mi +ni )/q = 1,

where the last relation follows from

1 = σ(1) = σ(λ
1/q
1 λ

1/q
2 λ

1/q
3 )

= (λ
1/q
1 e2πi`i/q)(λ

1/q
2 e2πimi/q)(λ

1/q
3 e2πini/q)

= (λ
1/q
1 λ

1/q
2 λ

1/q
3 )(e2πi(`i +mi +ni )/q) = e2πi(mi +ni +`i )/q.

Since (n,q) = 1, we get that ζi is a cubic root of 1. Thus, e ≤ 3,
so d ∈ {3,6,9}.
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We still need q. We use a result of Voutier, 1996, to the effect
that

λ
1/q
1 ≥ 1 +

1
2d

(
log log d

log d

)3

≥ 1 +
1

18

(
log log 9

log 9

)
.

Since λ1 ≤ 1.84, we get q ≤ 240. We checked that

X 3q − X 2q − X q − 1

is irreducible for all q ∈ [1,240]. Hence, d = 3q ≤ 9, so q ≤ 3.
The case q = 2 gives that the conjugates of λ1/2

1 on the circle
of radius |z| = λ

1/2
1 are λ1/2

1 and −λ1/2
1 and −1 is not a cubic

root. So, q = 3. We need η. Since K does not contain roots of
unity we get that η ∈ {±1}. We want to show that η = 1. If
η = −1, we then get

c1λ
n/2
1 − c2λ

n/2
2 − c3λ

n/2
3 = 0.

This gives

c3
1λ

n
1 − c3

2λ
n
2 − c3

3λ
n
3 − 3c1c2c3 = 0.
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This makes
c3

1λ
n
1 − c3

2λ
n
2 − c3

3λ
n
3 ∈ Q

but this is not Galois stable (by Galois automorphisms leads to
c3

1λ
n
1 = c3

2λ
n
2 and we saw that this is not possible).

So, η = 1 and we need to solve

c1λ
n/3
1 + c2λ

n/3
2 + c3λ

n/3
3 = 0.

It is better to shift to

Wn = c3
1λ

n
1 + c3

2λ
n
2 + c3

3λ
n
3 − 3c1c2c3.

This verifies the recurrence

Wn+4 = 2Wn+3 −Wn for n ∈ Z.

Further, it is better to work with (Un)n∈Z, where U1 = 11Wn. We
have

U0 = 0, U1 = 0, U2 = 1, U3 = 4.

Now we use SKOLEM.
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Twisted rational zeros of linearly recurrent sequences

Let (Un)n∈Z be a linearly recurrent sequence of integers
satisfying

Un+k = a1Un+k−1 + · · ·+ akUn

for n ≥ 0, where a1, . . . ,ak ,U0, . . . ,Uk−1 are in Z. Assume that
it has a Binet formula

Un =
s∑

i=1

fi(n)λn
i ,

where fi(X ) are polynomials in K = Q(λ1, . . . , λs).

Definition
We say that x ∈ Q is a twisted rational zero of (Un)n∈Z if for
some definition of λx

1, . . . , λ
x
s and some roots of unity ζ1, . . . , ζs

we have
s∑

i=1

ζi fi(x)λx
i = 0.
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Finiteness of twisted rational zeros

Theorem
Given a nondegenerate linearly recurrent sequence (Un)n∈Z,
there are only finitely many twisted rational zeros x. Their
denominator is effectively bounded.

We now describe the bounds.
For a number α ∈ K which is not zero or a root of unity let
ρK(α) be the Kummer exponent of α in K, which is the largest n
such that α ∈ Kn.
Note that ρK(α) =∞ if α = 0 or is a root of unity but it is finite
otherwise.
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Let N be the Chevalley-Bass number of K given below.

Theorem
Let K be a number field of degree d. There exists a positive
integer N depending on d such that for every positive integer n
the following holds: If α ∈ K is an Nnth power in K(ζNn), then α
is an nth power in K. In symbols

K(ζNn)Nn ∩K ⊂ Kn.

The above theorem is due to Chevalley, 1951 and Bass, 1965.
The number N is effective. Bilu, 2023 shows that

N ≤ exp

(
d +

9d
log(d + 1)

)
.
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Bounding the denominator of a twisted zero

Proposition

Assume that x = a/b is a twisted rational zero of (Un)n≥0. Then
either x is a root of one of the fi(X ) for i = 1, . . . , s, or

b | Nlcmi 6=j [ρK(λi/λj)],

where N := NK is the Chevalley, Bass number of K.

Example

Let Un = 2nT (mn) for all n ∈ Z for some fixed positive integer
m. Then

ZQ(U) = {−17/m,−4/m,−5/(3m),−1/m,0,1/(3m)}.

Florian Luca Twisted rational zeros of linear recurrences



In particular,

L =
⋃
q

K((λi/λj)
1/q : 1 ≤ i 6= j ≤ s),

where the above union is over the denominators of all possible
twisted rational zeros of (Un)n∈Z is a number field.
It follows from a theorem of Dvornicich, Zannier, 2000 that
setting ζ1 = 1, there are only finitely many s-tuples
(ζ2, . . . , ζs, x) with x rational such that

s∑
i=1

ζi fi(x)(λi/λ1)x = 0

and no proper subsum is zero. The orders of these roots of
unity are explicitly bounded in terms of L and s.
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In particular, one may fix q, ζ := (ζ2, . . . , ζs) and (λi/λ1)1/q for
i = 2, . . . , s and work with the linearly recurrent sequence of
algebraic numbers

Uq,ζ(n) =
s∑

i=1

ζi fi(n/q)((λi/λ1)1/q)n,

which by the Skolem-Mahler-Lech theorem has only finitely
many zeros n. These are not effective.
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p-adic analytic functions

Let us go back to Conjecture LM. We used p-adic analysis. We
give a brief detour below.
Let p be a prime number and let K be a finite extension of Qp.
We extend the standard p-adic absolute value | · | from Qp to K,
so that

|p|p = p−1.

We will also use the additive valuation νp defined by

νp(z) = −
log |z|p

log p
for z ∈ K×,

with the convention νp(0) = +∞.
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For a ∈ K and r > 0 we denote D(a, r) and D̄(a, r) the open
and the closed disk with center a and radius r :

D(a, r) = {z ∈ K : |z − a|p < r},
D̄(a, r) = {z ∈ K : |z − a|p ≤ r}.

We denote by O if this does not lead to a confusion, the ring of
integers of K:

O = {z ∈ K : |z|p ≤ 1} = D̄(0,1).

We call f : O 7→ O an analytic function if there is a sequence

α0, α1, α2, . . . ∈ O with lim
n→∞

|αn|p = 0 such that

f (z) =
∞∑

n=0

αnzn (z ∈ O).

Note that for any b ∈ O we have

f (z) =
∞∑

k=0

βk (z−b)k , where βk =
f (k)(b)

k !
=
∞∑

n≥k

(
n
k

)
αnbn−k .
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Functions exp and log in the p-adic domain

We denote
ρ = p−1/(p−1).

1 For z ∈ D(0, ρ) we define

exp(z) =
∞∑

n=0

zn

n!
.

For z,w ∈ D(0, ρ) we have

| exp(z)− 1|p = |z|p,
exp(z + w) = exp(z) exp(w),

exp′(z) = exp(z).
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1 For z ∈ D(1,1) we define

log(z) =
∞∑

n=1

(−1)n−1(z − 1)n

n
.

For z,w ∈ D(1,1) we have

log(zw) = log(z) + log(w), log′(z) =
1
z
.

2 For z ∈ D(1, ρ) we have

| log(z)|p = |z − 1|p, exp(log(z)) = z.

3 For z ∈ D(0, ρ) we have

log(exp(z)) = z.
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A remark

Note that, when p > 2 and p is unramified in K, we have

D(0, ρ) = D(0,1), D(1, ρ) = D(1,1), D̄(0,1) = D(0,p−1).

This will always be the case for us. This excludes the primes
p = 2,11 from our analysis.
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p-adic analytic interpolation of the Tribonacci sequence

Recall that we denote

Λ = {λ1, λ2, λ3}

the set of roots of the polynomial

P(X ) = X 3 − X 2 − X − 1.

Let p be a prime number and let K = Qp(λ1, λ2, λ3) be the
splitting field of P(X ) over Qp. As before, we denote O its ring
of integers. The discriminant of P(X ) is −44. Hence, assuming
in the sequel that p 6= 2,11, the field K is unramified over Qp.
Let d = [K : Qp].
If all the roots of P(X ) are in K then K = Qp and d = 1.
If P(X ) has exactly one root in K then d = 2.
Finally, if P(X ) is irreducible in K then d = 3.
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Recall that

T (n) =
∑
λ∈Λ

cλλn, cλ =
λ

P ′(λ)
.

Note that, since p 6= 2,11, we have

cλ ∈ O× for λ ∈ Λ.

Recall also that T (n) = 0 if and only if n ∈ ZZ(T ).
Note that Λ ⊂ O×. Let N = Np be the order of the subgroup of
the multiplicative group (O/p)× generated by Λ. Note that

N | pd − 1.

When d = 3, we have the more precise divisibility relation

N | p2 + p + 1.
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For ` ∈ {0,1, . . . ,N − 1} we consider the analytic function
f` : Zp 7→ Zp defined by

f`(z) =
∑
λ∈Λ

cλλ` exp
(

z log(λN)
)
. (6)

Note that by the definition of N we have

λN ∈ D(1,1) = D(1, ρ),

so f`(z) is indeed well-defined for z ∈ Zp. Furthermore, for
m ∈ Z we have

f`(m) = T (`+ mN) ∈ Z. (7)

Since Z is dense in Zp and f` is continuous, we indeed have
f`(z) ∈ Zp for z ∈ Zp.
Note also that f`(z) does not vanish identically on Zp: this also
follows from equation (7).
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Analytic form of Conjectures LM and RLM
.

Theorem

1 The following three statements are equivalent.
ref=() Conjecture LM holds for the given p.
ref=() For every ` ∈ {0, . . . ,N − 1}, the zeros of f`(z) are in N−1Z.
ref=() For every ` the following holds: if b ∈ Zp is a zero of f`(z)

then `+ Nb ∈ ZZ(T ).
2 The following three statements are equivalent.

ref=() Conjecture RLM holds for the given p.
ref=() For every ` ∈ {0, . . . ,N − 1}, the zeros of f`(z) are in

Q ∩ Zp.
ref=() For every ` the following holds: if b ∈ Zp is a zero of f`(z)

then `+ Nb ∈ ZQ(T ).
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This theorem is very useful for producing counter-examples to
both conjectures.

More importantly, it provides a clear motivation why the
conjectures cannot be expected to hold except for very few
primes.

Indeed, there is absolutely no reason to expect that every f`(z)
would have only zeros in Q, and it is even less of a reason to
expect that it would not vanish outside a fixed set of six
elements.
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Detecting zeros of f`(z)

To make use of Theorem 18, we must develop a practical
method for locating zeros of f`(z). As in the previous sections, p
is a prime number distinct from 2 and 11, and
` ∈ {0,1, . . . ,N − 1}.
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A non-vanishing condition

To start with, let us give a simple sufficient condition for f` be
non-vanishing on Zp.

Proposition

If p - T (`) then f`(z) 6= 0 for z ∈ Zp.
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The first vanishing condition

Now let study sufficient conditions for f`(z) to have a zero Zp.
As follows from above, the first condition must be

p | T (`). (8)

This will be assumed for the rest.
It will be more convenient to work with the function

g(z) =
f`(z)

p

instead of f`(z) itself.
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The second vanishing condition

The second condition that we impose is

g′(0) 6≡ 0 (mod p). (9)

Proposition

Assume that (8) and (9) hold. Then f`(z) has exactly one zero
on Zp.
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Sufficient conditions for validity and for failure of Conjectures LM and RLM

To implement this in practice, we need to express condition (9)
in terms of the Tribonacci numbers T (n) rather than the
function g(z). This is not hard. For example, condition (9) is
equivalent to

T (`+ N) 6≡ T (`) (mod p2). (10)
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Now, to disprove Conjecture LM for some prime number p, we
must find ` such that both (8) and (10) are satisfied, and such
that the resulting zero b of f`(z) satisfies

`+ bN 6∈ ZZ(T ).

It suffices to show that

`+ bN 6≡ 0,−1,−4,−17 (mod p).

Moreover, since b ≡ b0 (mod p), this can be re-written as

`+ b0N 6≡ 0,−1,−4,−17 (mod p).

This translates into

u := `− T (`)

p

(
T (`+ N)− T (`)

p

)−1

N 6≡ 0,−1,−4,−17 (mod p).

(11)
Similarly, when p 6= 3, then Conjecture RLM would fail if

u 6≡ 0,−1,−4,−17,1/3,−5/3 (mod p). (12)
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Let us summarize what we proved.

Theorem

Let p 6= 2,11 be a prime number, and let ` ∈ {0,1, . . .Np − 1}
be such that (8), (10) and (11) hold true. Then Conjecture LM
fails for this p. Similarly, if p 6= 3 and (8), (10) and (12) hold true
then Conjecture RLM fails for this p.
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Now let us give sufficient conditions of validity of each
conjecture.

Theorem

Let p be a prime number distinct from 2 and 11. Assume that
for every ` satisfying (8), condition (10) holds true as well, and
the following also holds: ` ≡ a (mod N) for some a ∈ ZZ(T ).
Then Conjecture LM holds for this p.
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For Conjecture RLM we will restrict to the primes congruent
to 2 modulo 3.

Theorem

Let p be a prime number satisfying Λ ⊂ Qp and 3 - N. Assume
that for every ` satisfying (8), condition (10) holds true as well,
and the following also holds: ` ≡ a (mod N) for some
a ∈ ZQ(T ). Then Conjecture RLM holds for this p.
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The disproof of the conjectures for various primes p

We start with the negative parts. We implemented the
algorithms implied by Theorem 21 in Mathematica for all primes
p ≤ 600.
There are 109 primes p ≤ 600. For each prime p, we first
computed N := Np, the period of (Tn)n∈Z modulo p. Then for
each p we searched ` such that (8), (10) and (11) all hold true.
This calculation took a few minutes and found such an example
` for all p ≤ 600 except for p ∈ {2,3,11,83,103,163,397}. See
the table on the next page for the actual data. This proves the
negative part of Theorem 8.
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p N ` u p N ` u p N ` u
5 31 21 2 179 32221 100 114 379 48007 309 76
7 48 5 1 181 10981 25 66 383 147073 219 338

13 168 6 4 191 36673 72 22 389 151711 1739 354
17 96 28 7 193 4656 171 76 401∗ 400 265 132
19 360 18 12 197 3234 382 84 409 41820 365 310
23 553 29 15 199 198 26 40 419∗ 418 277 138
29 140 77 24 211 5565 83 203 421 420 118 214
31 331 14 22 223 16651 361 38 431 61920 465 51
37 469 19 17 227 17176 34 57 433 62641 385 334
41 560 35 15 229 17557 249 61 439 6424 781 160
43 308 82 11 233 9048 36 126 443 196693 516 21

47∗ 46 31 16 239 4760 28 85 449 202051 107 229
53∗ 52 33 16 241 29040 506 57 457 34808 858 30
59 3541 64 34 251 63253 304 218 461 35420 192 9
61 1860 68 34 257 256 54 34 463 71611 624 199
67 1519 100 43 263 23056 37 214 467 218557 1269 70
71 5113 132 62 269∗ 268 177 88 479 76480 56 8
73 5328 31 30 271 73440 331 165 487 79219 131 85
79 3120 18 76 277 12788 61 191 491 10045 802 289
89 8011 109 8 281 13160 536 62 499∗ 166 109 331
97 3169 19 51 283 13348 777 193 503 42168 107 497

101 680 186 23 293 28616 458 200 509 259591 1228 433
107 1272 184 52 307 31416 30 163 521 271963 2058 220
109 990 105 62 311 310 123 58 523 273528 237 16
113 12883 172 15 313 32761 29 184 541 58536 633 200
127 5376 586 30 317 100807 36 186 547 149604 104 72
131 5720 79 101 331 36631 188 4 557 103416 509 424
137 18907 11 5 337 16224 320 103 563 52828 87 232
139 3864 34 49 347 40136 156 244 569 53960 322 49
149 7400 10 38 349 17400 1428 33 571 40755 527 155
151 2850 223 142 353 124963 95 38 577 111169 361 85
157 8269 71 107 359 42960 1204 115 587∗ 293 96 194
167 9296 41 68 367 45019 692 99 593 3256 849 422
173 2494 314 25 373 139128 279 188 599 598 257 485

Florian Luca Twisted rational zeros of linear recurrences



Conjectures

LetML and NRLM be the subsets of primes p such that
Conjecture LM holds and Conjecture RLM fails, respectively.
We offer the following conjecture.

Conjecture
Both subsetsML and NRLM are infinite. In fact, they are both
of positive lower density as subsets of the set of all primes.
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HAPPY BIRTHDAY BEN!
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