Recursive sequences and numeration

V. Berthé

IRIF-CNRS-Université Paris Cité

WORReLL'23

From linear recurrences to numeration systems

Start with your favourite linear recurrence sequence

Fibonacci recurrence

$$F_{n+1} = F_n + F_{n-1}$$

From linear recurrences to numeration systems

Start with your favourite linear recurrence sequence

Tribonacci recurrence

$$T_{n+2} = T_{n+1} + T_n + T_{n-1}$$

From linear recurrences to numeration systems

Start with your favourite linear recurrence sequence

Tribonacci recurrence

$$T_{n+2} = T_{n+1} + T_n + T_{n-1}$$

Let β be the Tribonacci number, i.e., the real root of

$$X^3 - X^2 - X - 1 = 0$$

Let α be one of its conjugated complex roots. One has

$$\beta > 1, \quad |\alpha| < 1$$

The Tribonacci number β is a Pisot number

From linear recurrences to numeration systems Start with your favourite linear recurrence sequence

Tribonacci recurrence

$$T_{n+2} = T_{n+1} + T_n + T_{n-1}$$

Let β be the Tribonacci number, i.e., the real root of

$$X^3 - X^2 - X - 1 = 0$$

Let α be one of its conjugated complex roots. One has

 $\beta>1, \quad |\alpha|<1$

The Tribonacci number β is a Pisot number

Pisot-Vijayaraghavan number An algebraic integer is a Pisot number if its algebraic conjugates λ (except itself) satisfy

 $|\lambda| < 1$

A brief overview

A brief overview

Linear recurrences \rightsquigarrow numeration systems

 \rightsquigarrow numeration dynamical systems \rightsquigarrow tilings

A linear recurrence allows the expansion of

- integers
- positive real numbers

A brief overview

 $\label{eq:linear} \mbox{Linear recurrences} \sim \mbox{numeration systems} \\ \sim \mbox{numeration dynamical systems} \sim \mbox{tilings}$

A linear recurrence allows the expansion of

- integers \rightarrow Odometer
- \bullet positive real numbers \rightarrow Beta-transformation

And the study of statistical properties of digits can be performed via their associated dynamical systems

- Finite expansions and periodic expansions
 - Average carry propagation for +1
 - Tilings and dynamical systems

Fibonacci numeration and carry prppagation

Fibonacci numeration scale (Zeckendorf representation)

$$F_0 = 1, \ F_1 = 2, \ F_{n+2} = F_{n+1} + F_n$$

 $N = \sum_{i=0}^k \varepsilon_i F_i, \ \ \varepsilon_i \in \{0, 1\}$

The set of greedy expansions of natural integers are words in $\{0,1\}^*$ for which 11 is forbidden

Fibonacci numeration and carry prppagation Fibonacci numeration scale (Zeckendorf representation)

$$F_0 = 1, \ F_1 = 2, \ F_{n+2} = F_{n+1} + F_n$$

 $11 \not\exists \sim 001$

 $N = F_1 + F_3 + F_6 + F_8$ 010100101 + 1 = 000010101 $\sim N + 1$ Fibonacci numeration and carry prppagation Fibonacci numeration scale (Zeckendorf representation)

$$F_0 = 1, \ F_1 = 2, \ F_{n+2} = F_{n+1} + F_n$$

	Ν	ср		Ν	ср		Ν	ср
ε	0	1	1000	5	1	10010	10	3
1	1	2	100 <mark>1</mark>	6	2	10 <mark>100</mark>	11	1
10	2	3	10 <mark>10</mark>	7	5	1010 <mark>1</mark>	12	6
100	3	1	10000	8	1	100000	13	1
10 <mark>1</mark>	4	4	1000 <mark>1</mark>	9	2	10000 <mark>1</mark>	14	

Average carry propagation
$$= \frac{\tau}{\tau - 1} \simeq 2.618$$

Base *p*

The successor map changes

- the least digit of every number
- plus another one every p numbers
- plus again another one every p^2 numbers, and so on...

The average carry propagation of the successor function, computed over the first N integers, tends to

$$1 + \frac{1}{p} + \frac{1}{p^2} + \frac{1}{p^3} + \dots = \frac{p}{p-1}$$

when N tends to infinity.

When dynamical systems enter into play

Let L be the set of representations of the integers The average carry propagation CP_L is the limit, if it exists, of the mean of the carry propagation at the first N words of L

$$\mathsf{CP}_L = \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} \mathsf{cp}_L(n)$$

$$\mathsf{CP}_L = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \mathsf{cp}_L(\mathsf{Succ}_L^i(0))$$

This is an ergodic sum!

Ergodic theorem

We are given a dynamical system (X, T, \mathcal{B}, μ) with $T: X \to X$

- Average time values: one particle over the long term
- Average space values: all particles at a particular instant Ergodicity

$$\mu(B) = \mu(T^{-1}B)$$
 T-invariance
 $T^{-1}B = B \implies \mu(B) = 0 \text{ or } 1 \text{ ergodicity}$

Ergodic theorem space mean= average mean

If
$$f \in L_1(\mu)$$
, $\lim_N \frac{1}{N} \sum_{0 \le n < N} f(T^n x) = \int f d\mu$ a.e. x

From the successor map to the odometer

- We have to turn the language *L* into a compact set.
- We work here with left infinite words since we use representations with most-significant digits on the left.
- One gets a compact set made of infinite words obtained by embedding in a dense way the representations of non-negative natural integers padded with 0's.
- We have to transform the successor function into a map of this compact set into itself.

 \sim odometers or adding machines [Grabner-Liardet-Tichy'95]

From the successor map to the odometer

- We have to turn the language L into a compact set.
- We work here with left infinite words since we use representations with most-significant digits on the left.
- One gets a compact set made of infinite words obtained by embedding in a dense way the representations of non-negative natural integers padded with 0's.
- We have to transform the successor function into a map of this compact set into itself.

 \sim odometers or adding machines [Grabner-Liardet-Tichy'95]

Fibonacci odometer

$$\begin{array}{rrrr} & \cdots & 101001010 \\ + & & 1 \\ = & \cdots & 101010000 \end{array}$$

From the successor map to the odometer

- We have to turn the language *L* into a compact set.
- We work here with left infinite words since we use representations with most-significant digits on the left.
- One gets a compact set made of infinite words obtained by embedding in a dense way the representations of non-negative natural integers padded with 0's.
- We have to transform the successor function into a map of this compact set into itself.

\sim odometers or adding machines [Grabner-Liardet-Tichy'95]

Base p

- The completion \mathcal{K}_p is the ring \mathbb{Z}_p of the *p*-adic integers.
- It is a topological group, and the odometer τ_p is just addition by one, and thus a group rotation

$$\sim$$
 $\mathsf{CP}_L = \lim_{N \to \infty} \frac{1}{N} \sum_{i=0}^{N-1} \tau_p^i(0) = \frac{p}{p-1}$

Exponential numeration scale

A numeration scale is an infinite sequence of positive integers and which plays the role of the sequence of the powers in an integer base.

It is a strictly increasing sequence of integers $G = (G_n)_{n \in \mathbb{N}}$ with $G_0 = 1$. The *G*-expansion of a natural integer *N* is the result of the greedy algorithm.

The numeration scale $G = (G_n)$ is exponential if

 $G_n \sim C \gamma^n$

Exponential numeration scale

A numeration scale is an infinite sequence of positive integers and which plays the role of the sequence of the powers in an integer base.

It is a strictly increasing sequence of integers $G = (G_n)_{n \in \mathbb{N}}$ with $G_0 = 1$. The *G*-expansion of a natural integer *N* is the result of the greedy algorithm.

The numeration scale $G = (G_n)$ is exponential if

 $G_n \sim C \gamma^n$

Theorem [Barat-Grabner] If G is exponential, then (\mathcal{K}_G, τ_G) is uniquely ergodic

Theorem [B.-Frougny-Rigo-Sakarovitch]

Let G be an exponential numeration. Then the average carry propagation exists. If L_G is prefix closed and right-extensible, then

$$\mathsf{CP}_{\mathcal{G}} = \frac{\gamma}{\gamma - 1}$$

Numeration dynamical systems are simple algorithms expressed in terms of dynamical systems that produce digits in classical representation systems

• Decimal expansions

$$T: [0,1] \to [0,1], \ x \mapsto 10x - [10x] = \{10x\}$$

Numeration dynamics

Numeration dynamical systems are simple algorithms expressed in terms of dynamical systems that produce digits in classical representation systems

• Decimal expansions

$$T: [0,1] \to [0,1], \ x \mapsto 10x - [10x] = \{10x\}$$

$$x_{1} = T(x) = 10x - [10x] = 10x - a_{1}$$
$$x = \frac{a_{1}}{10} + \frac{x_{1}}{10}$$
$$x_{2} = T(x_{1}) = T^{2}(x) \qquad a_{2} = \lfloor 10T(x) \rfloor$$
$$x = \frac{a_{1}}{10} + \frac{a_{2}}{10^{2}} + \frac{x_{2}}{10^{2}} = \sum_{i=1}^{\infty} a_{i} 10^{-i}$$

Numeration dynamics

Numeration dynamical systems are simple algorithms expressed in terms of dynamical systems that produce digits in classical representation systems

• Decimal expansions

$$T: [0,1] \to [0,1], \ x \mapsto 10x - [10x] = \{10x\}$$

The map *T* produces the digits

$$a_n = \lfloor 10 T^{n-1}(x) \rfloor$$

From numeration dynamics to symbolic dynamics

- Decimal expansion $T: [0,1] \rightarrow [0,1], x \mapsto \{10x\}$
- Beta-transformation $T: [0,1] \rightarrow [0,1], x \mapsto \{\beta x\}$
- Continued fractions $T: [0,1] \rightarrow [0,1], x \mapsto \{1/x\}$

From numeration dynamics to symbolic dynamics

- Decimal expansion $T: [0,1] \rightarrow [0,1], x \mapsto \{10x\}$
- Beta-transformation $T: [0,1] \rightarrow [0,1], x \mapsto \{\beta x\}$

$$\beta > 1$$
 $x = \sum_{i=1}^{\infty} a_i \beta^{-i}$

• Continued fractions $T: [0,1] \rightarrow [0,1], x \mapsto \{1/x\}$

 β -numeration [Rényi'57, Parry'60]

Let $\beta > 1$. We consider the transformation

 $T_{\beta}(x) \colon [0,1] \to [0,1], \ x \mapsto \beta x - \lfloor \beta x \rfloor$

Let $\mathcal{A}_{eta} := \{0, 1, \cdots, \lceil eta
ceil - 1\}$

Every real number $x \in [0,1]$ has an expansion of the form

$$x = \sum_{i \ge 1} u_i \beta^{-i}$$

with
$$u_i = \lfloor \beta T_{\beta}^{i-1}(x) \rfloor \in \mathcal{A}_{\beta}, \quad \forall i \geq 1$$

Expansion of 1

$$1 = \sum_{i \ge 1} t_i \beta^{-i}$$

will be used in the admissibility condition

Expansion of 1

$$1 = \sum_{i \ge 1} t_i \beta^{-i}$$

will be used in the admissibility condition

Let $d_{\beta}(1) = (t_n)_{n \geq 1}$. We set

$$\begin{cases} d_{\beta}^{*}(1) = d_{\beta}(1), \text{ if } d_{\beta}(1) \text{ is infinite} \\ d_{\beta}^{*}(1) = (t_{1} \dots t_{m-1}(t_{m}-1))^{\omega}, \text{ if } d_{\beta}(1) = t_{1} \dots t_{m-1}t_{m}0^{\omega} \ (t_{m} \neq 0) \end{cases}$$

Tribonacci numeration

$$\beta^3 = \beta^2 + \beta + 1, \ d_{\beta}(1) = 111, \ d_{\beta}^*(1) = 110110110\cdots$$

Expansion of 1

$$1=\sum_{i\geq 1}t_i\beta^{-i}$$

will be used in the admissibility condition

The set of β-expansions of real numbers in [0, 1) is the set of sequences (u_n)_{n≥1} with values in A_β such that

$$\forall k \geq 1, \ (u_n)_{n \geq k} <_{\mathsf{lex}} d^*_\beta(1)$$

• The closure of this set is called the β -shift

$$\forall k \geq 1, \ (u_n)_{n \geq k} \leq_{\mathsf{lex}} d^*_\beta(1)$$

β-shift= symbolic dynamical systems made of (bi-infinite) sequences of digits

Expansion of 1

$$1=\sum_{i\geq 1}t_i\beta^{-i}$$

will be used in the admissibility condition

We assume that β is Pisot. Let $d_{\beta}(1)$ be the expansion of 1. Then, $d_{\beta}(1)$ is either finite or ultimately periodic.

The language of admissible words has a simple description as regular/sofic language

The finiteness property

- Fin (β) is the set of finite expansions
- Per (β) is the set of eventually periodic expansions
- Fin $(\beta) \subset \text{Per } (\beta)$

Theorem [Bertrand-Schmidt] Let β be a Pisot number

Per $(\beta) = \mathbb{Q}(\beta) \cap \mathbb{R}_+$

The finiteness property

- Fin (β) is the set of finite expansions
- Per (β) is the set of eventually periodic expansions
- Fin $(\beta) \subset Per (\beta)$

Theorem [Bertrand-Schmidt] Let β be a Pisot number

Per
$$(eta) = \mathbb{Q}(eta) \cap \mathbb{R}_+$$

The (F) property [Frougny-Solomyak'92]

$$(F)$$
: Fin $(\beta) = \mathbb{Z}[\beta^{-1}]_{\geq 0}$

Theorem [Frougny-Solomyak'92] The finiteness property (F) implies that β is a Pisot number

A sufficient condition [Frougny-Solomyak'92] Let β be the positive root of

$$X^m - a_1 X^{m-1} - \cdots - a_m$$
 where $a_1 \ge a_2 \ge a_m \cdots > 0$

Then β is a Pisot number and β satisfies the (F) property

The finiteness property

- Fin (β) is the set of finite expansions
- Per (β) is the set of eventually periodic expansions
- Fin $(\beta) \subset Per (\beta)$

Theorem [Bertrand-Schmidt] Let β be a Pisot number

Per $(\beta) = \mathbb{Q}(\beta) \cap \mathbb{R}_+$

The (F) property [Frougny-Solomyak'92]

$$(F)$$
: Fin $(\beta) = \mathbb{Z}[\beta^{-1}]_{\geq 0}$

Theorem [Frougny-Solomyak'92] The finiteness property (F) implies that β is a Pisot number

Theorem [Akiyama] The origin is an exclusive inner point of the central tile/Rauzy fractal if and only if (F) holds

Toward Rauzy fractals

- Under which conditions is it possible to give a geometric representation of the β -shift as a map acting on a compact group?
- How to characterize real numbers in [0, 1] that have a purely periodic expansion?
- How to characterize rational numbers in [0, 1] that have a purely periodic expansion?

Periodic decimal expansions

Real numbers having a purely periodic decimal expansion are the rationals p/q (gcd(p, q) = 1) with q coprime with 10

Periodic decimal expansions

Real numbers having a purely periodic decimal expansion are the rationals p/q (gcd(p, q) = 1) with q coprime with 10 Let

$$T: \mathbb{Q} \cap [0,1] \rightarrow \mathbb{Q} \cap [0,1], \ x \mapsto 10x - [10x] = \{10x\}$$

Let $a/b \in [0,1]$ with b coprime with 10

$$T(a/b) = \frac{10a - [10 \cdot a/b] \cdot b}{b} = \frac{10 \cdot a \mod b}{b}$$

• Denominator of $T^k(a/b) = b$

• Numerator of $T^{k}(a/b)$ belongs to $\{0, 1, \cdots, b-1\}$

Periodic decimal expansions

Real numbers having a purely periodic decimal expansion are the rationals p/q (gcd(p, q) = 1) with q coprime with 10 Let

$$T: \mathbb{Q} \cap [0,1] \rightarrow \mathbb{Q} \cap [0,1], \ x \mapsto 10x - [10x] = \{10x\}$$

Let $a/b \in [0,1]$ with b coprime with 10

$$T(a/b) = \frac{10a - [10 \cdot a/b] \cdot b}{b} = \frac{10 \cdot a \mod b}{b}$$

- Denominator of $T^k(a/b) = b$
- Numerator of $T^k(a/b)$ belongs to $\{0, 1, \cdots, b-1\}$

We thus introduce

 $T'_b: x \mapsto 10 \cdot x \mod b$ $T'_b(a) \sim \text{numerator of } T(a/b)$ We conclude by noticing that T'_b is onto and thus one-to-one since we work on a finite set

Purely periodic β -expansions

Beta-numeration Let $\beta > 1$. We expand real numbers $x \in [0, 1]$ as

$$x = \sum_{i \ge 1} u_i \beta^{-i}, \quad u_i \in \{0, \dots, \lceil \beta \rceil - 1\}, \ \forall i \ge 1$$

A Lagrange theorem Theorem [K. Schmidt, A. Bertrand] If β is a Pisot number, then x has an eventually periodic expansion iff $x \in \mathbb{Q}(\beta)$

A Galois theorem Theorem[Ito-Sano-Hui, B.-Siegel] If β is a Pisot number, then x has a purely periodic expansion iff $(x, x') \in \widetilde{\mathcal{R}_{\beta}}$.

- We first need to give a meaning to the notion of conjugate x'
- We then are looking for a natural extension of the beta-transformation T_β: x → {βx} which is not invertible
- We consider the past and future of orbits under T_β, i.e., the two-sided β-shift X_β

- We first need to give a meaning to the notion of conjugate x'
- We then are looking for a natural extension of the beta-transformation T_β: x → {βx} which is not invertible
- We consider the past and future of orbits under T_β, i.e., the two-sided β-shift X_β

To an element

$$(w, u) = ((w_i)_{i\geq 0}, (u_i)_{i\geq 1}) \in X_{\beta}$$

we associate the formal power series

$$(\sum_{i\geq 0} w_i X^i, \sum_{i\geq 1} u_i X^{-i}) \quad \sim \quad (\sum_{i\geq 0} w_i \beta^i, \sum_{i\geq 1} u_i \beta^{-i})$$

- We first need to give a meaning to the notion of conjugate x'
- We then are looking for a natural extension of the beta-transformation T_β: x → {βx} which is not invertible
- We consider the past and future of orbits under T_{β} , i.e., the two-sided β -shift X_{β}

To an element

$$(w, u) = ((w_i)_{i \ge 0}, (u_i)_{i \ge 1}) \in X_{\beta}$$

we associate the formal power series

$$(\sum_{i\geq 0} w_i X^i, \sum_{i\geq 1} u_i X^{-i}) \quad \rightsquigarrow \quad (\sum_{i\geq 0} w_i \beta^i, \sum_{i\geq 1} u_i \beta^{-i})$$

Meaning? Convergence?

- We first need to give a meaning to the notion of conjugate x'
- We then are looking for a natural extension of the beta-transformation T_β: x → {βx} which is not invertible
- We consider the past and future of orbits under T_β, i.e., the two-sided β-shift X_β

To an element

$$(w, u) = ((w_i)_{i \ge 0}, (u_i)_{i \ge 1}) \in X_{\beta}$$

we associate the formal power series

$$(\sum_{i\geq 0} w_i X^i, \sum_{i\geq 1} u_i X^{-i}) \quad \sim \quad (\sum_{i\geq 0} w_i \beta^i, \sum_{i\geq 1} u_i \beta^{-i})$$

Take the conjugates of β (Pisot) and the prime ideals in the integer ring $\mathcal{O}_{\mathbb{Q}(\beta)}$ of $\mathbb{Q}(\beta)$ that contain β

$$\widetilde{\mathcal{R}_{\beta}} \subset \mathbb{R}^{d-1} imes \prod_{p \mid \mathcal{N}(\beta)} \mathbb{Q}_{p}^{d_{p}} imes \mathbb{R}$$

Tribonacci numeration

Let β stand for Tribonacci number (positive root of $X^3 - X^2 - X - 1 = 0$). Let α be one of its conjugate complex roots. One has $\beta > 1, |\alpha| < 1$ and $d_{\beta}(1) = 111$. Let

$$\mathcal{R} = \{ \sum_{i \ge 0} \varepsilon_i \alpha^i; \ \forall i, \ \varepsilon_i \in \{0, 1\}, \ \varepsilon_i \varepsilon_{i+1} \varepsilon_{i+2} = 0 \}$$

Purely periodic expansions of rational numbers

We assume that β is a **Pisot unit**

 $\gamma(\beta) = \sup\{0 < c < 1, \text{ every rational element in } [0, c[\text{ has a purely perio}]$

 $\gamma(\beta) \geq A$ if diag $[0, A] \subset \mathcal{R}_{\beta}$

Theorem [Akiyama] The origin is an exclusive inner point of the central tile/Rauzy fractal if and only if (F) holds

Theorem [Akiyama] If β is a Pisot unit satisfying the finiteness property, then $\gamma(\beta) > 0$

Theorem [Adamczewski-Frougny-Siegel-Steiner] The quantity $\gamma(\beta)$ is irrational when β is a cubic Pisot unit (not totally real case)

And now

- $\bullet\,$ Carry propagation \rightsquigarrow Interest of dynamical systems
- $\bullet\,$ Finiteness property \sim Decision problems, transcendence
- Canonical Number Systems, Shift Radix Systems

$$\sum_{n} M^{n} u_{n}$$

