Recursive sequences and numeration

V. Berthé
IRIF-CNRS-Université Paris Cité

WORReLL'23

From linear recurrences to numeration systems

Start with your favourite linear recurrence sequence

Fibonacci recurrence

$$
F_{n+1}=F_{n}+F_{n-1}
$$

From linear recurrences to numeration systems

Start with your favourite linear recurrence sequence
Tribonacci recurrence

$$
T_{n+2}=T_{n+1}+T_{n}+T_{n-1}
$$

From linear recurrences to numeration systems

Start with your favourite linear recurrence sequence

Tribonacci recurrence

$$
T_{n+2}=T_{n+1}+T_{n}+T_{n-1}
$$

Let β be the Tribonacci number, i.e., the real root of

$$
X^{3}-X^{2}-X-1=0
$$

Let α be one of its conjugated complex roots. One has

$$
\beta>1, \quad|\alpha|<1
$$

The Tribonacci number β is a Pisot number

From linear recurrences to numeration systems

Start with your favourite linear recurrence sequence

Tribonacci recurrence

$$
T_{n+2}=T_{n+1}+T_{n}+T_{n-1}
$$

Let β be the Tribonacci number, i.e., the real root of

$$
X^{3}-X^{2}-X-1=0
$$

Let α be one of its conjugated complex roots. One has

$$
\beta>1, \quad|\alpha|<1
$$

The Tribonacci number β is a Pisot number
Pisot-Vijayaraghavan number An algebraic integer is a Pisot number if its algebraic conjugates λ (except itself) satisfy

$$
|\lambda|<1
$$

A brief overview

Linear recurrences \leadsto numeration systems
\sim numeration dynamical systems \leadsto tilings

A brief overview

> Linear recurrences \leadsto numeration systems
> \leadsto numeration dynamical systems \leadsto tilings

A linear recurrence allows the expansion of

- integers
- positive real numbers

A brief overview

> Linear recurrences \leadsto numeration systems
> \sim numeration dynamical systems \leadsto tilings

A linear recurrence allows the expansion of

- integers \leadsto Odometer
- positive real numbers \sim Beta-transformation

And the study of statistical properties of digits can be performed via their associated dynamical systems

- Finite expansions and periodic expansions
- Average carry propagation for +1
- Tilings and dynamical systems

Fibonacci numeration and carry prppagation

Fibonacci numeration scale (Zeckendorf representation)

$$
\begin{gathered}
F_{0}=1, F_{1}=2, \quad F_{n+2}=F_{n+1}+F_{n} \\
N=\sum_{i=0}^{k} \varepsilon_{i} F_{i}, \quad \varepsilon_{i} \in\{0,1\}
\end{gathered}
$$

The set of greedy expansions of natural integers are words in $\{0,1\}^{*}$ for which 11 is forbidden

Fibonacci numeration and carry prppagation

Fibonacci numeration scale (Zeckendorf representation)

$$
F_{0}=1, F_{1}=2, F_{n+2}=F_{n+1}+F_{n}
$$

How does the carry propagate with respect to the successor function $/+1$?

$11 \nexists \sim 001$

$N=F_{1}+F_{3}+F_{6}+F_{8}$
010100101
$+1$
$=000010101$
$\sim N+1$

Fibonacci numeration and carry prppagation

Fibonacci numeration scale (Zeckendorf representation)

$$
F_{0}=1, F_{1}=2, F_{n+2}=F_{n+1}+F_{n}
$$

Average carry propagation $=\frac{\tau}{\tau-1} \simeq 2.618$

Base p

The successor map changes

- the least digit of every number
- plus another one every p numbers
- plus again another one every p^{2} numbers, and so on...

The average carry propagation of the successor function, computed over the first N integers, tends to

$$
1+\frac{1}{p}+\frac{1}{p^{2}}+\frac{1}{p^{3}}+\cdots=\frac{p}{p-1}
$$

when N tends to infinity.

When dynamical systems enter into play

Let L be the set of representations of the integers
The average carry propagation $C P_{L}$ is the limit, if it exists, of the mean of the carry propagation at the first N words of L

$$
\begin{gathered}
\mathrm{CP}_{L}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=0}^{N-1} \mathrm{cp}_{L}(n) \\
\mathrm{CP}_{L}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=0}^{N-1} \mathrm{cp}_{L}\left(\operatorname{Succ}_{L}^{i}(0)\right)
\end{gathered}
$$

This is an ergodic sum!

Ergodic theorem

We are given a dynamical system (X, T, \mathcal{B}, μ) with $T: X \rightarrow X$

- Average time values: one particle over the long term
- Average space values: all particles at a particular instant Ergodicity

$$
\begin{gathered}
\mu(B)=\mu\left(T^{-1} B\right) \quad T \text {-invariance } \\
T^{-1} B=B \Longrightarrow \mu(B)=0 \text { or } 1 \text { ergodicity }
\end{gathered}
$$

Ergodic theorem space mean= average mean

$$
\text { If } f \in L_{1}(\mu), \quad \lim _{N} \frac{1}{N} \sum_{0 \leq n<N} f\left(T^{n} x\right)=\int f d \mu \quad \text { a.e. } x
$$

From the successor map to the odometer

- We have to turn the language L into a compact set.
- We work here with left infinite words since we use representations with most-significant digits on the left.
- One gets a compact set made of infinite words obtained by embedding in a dense way the representations of non-negative natural integers padded with 0's.
- We have to transform the successor function into a map of this compact set into itself.
$~$ odometers or adding machines [Grabner-Liardet-Tichy'95]

From the successor map to the odometer

- We have to turn the language L into a compact set.
- We work here with left infinite words since we use representations with most-significant digits on the left.
- One gets a compact set made of infinite words obtained by embedding in a dense way the representations of non-negative natural integers padded with 0's.
- We have to transform the successor function into a map of this compact set into itself.
\sim odometers or adding machines [Grabner-Liardet-Tichy'95]
Fibonacci odometer

| | $\cdots 101001010$ |
| ---: | ---: | ---: |
| + | 1 |
| $=$ | $\cdots 101010000$ |

From the successor map to the odometer

- We have to turn the language L into a compact set.
- We work here with left infinite words since we use representations with most-significant digits on the left.
- One gets a compact set made of infinite words obtained by embedding in a dense way the representations of non-negative natural integers padded with 0's.
- We have to transform the successor function into a map of this compact set into itself.
\sim odometers or adding machines [Grabner-Liardet-Tichy'95]

Base p

- The completion \mathcal{K}_{p} is the ring \mathbb{Z}_{p} of the p-adic integers.
- It is a topological group, and the odometer τ_{p} is just addition by one, and thus a group rotation

$$
\leadsto \mathrm{CP}_{L}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=0}^{N-1} \tau_{p}^{i}(0)=\frac{p}{p-1}
$$

Exponential numeration scale

A numeration scale is an infinite sequence of positive integers and which plays the role of the sequence of the powers in an integer base.
It is a strictly increasing sequence of integers $G=\left(G_{n}\right)_{n \in \mathbb{N}}$ with $G_{0}=1$. The G-expansion of a natural integer N is the result of the greedy algorithm.

The numeration scale $G=\left(G_{n}\right)$ is exponential if

$$
G_{n} \sim C \gamma^{n}
$$

Exponential numeration scale

A numeration scale is an infinite sequence of positive integers and which plays the role of the sequence of the powers in an integer base.

It is a strictly increasing sequence of integers $G=\left(G_{n}\right)_{n \in \mathbb{N}}$ with $G_{0}=1$. The G-expansion of a natural integer N is the result of the greedy algorithm.

The numeration scale $G=\left(G_{n}\right)$ is exponential if

$$
G_{n} \sim C \gamma^{n}
$$

Theorem [Barat-Grabner] If G is exponential, then $\left(\mathcal{K}_{G}, \tau_{G}\right)$ is uniquely ergodic

Theorem [B.-Frougny-Rigo-Sakarovitch]
Let G be an exponential numeration. Then the average carry propagation exists. If L_{G} is prefix closed and right-extensible, then

$$
\mathrm{CP}_{G}=\frac{\gamma}{\gamma-1}
$$

Numeration dynamics

Numeration dynamical systems are simple algorithms expressed in terms of dynamical systems that produce digits in classical representation systems

- Decimal expansions

$$
T:[0,1] \rightarrow[0,1], x \mapsto 10 x-[10 x]=\{10 x\}
$$

Numeration dynamics

Numeration dynamical systems are simple algorithms expressed in terms of dynamical systems that produce digits in classical representation systems

- Decimal expansions

$$
T:[0,1] \rightarrow[0,1], x \mapsto 10 x-[10 x]=\{10 x\}
$$

$$
\begin{gathered}
x_{1}=T(x)=10 x-[10 x]=10 x-a_{1} \\
x=\frac{a_{1}}{10}+\frac{x_{1}}{10} \\
x_{2}=T\left(x_{1}\right)=T^{2}(x) \quad a_{2}=\lfloor 10 T(x)\rfloor \\
x=\frac{a_{1}}{10}+\frac{a_{2}}{10^{2}}+\frac{x_{2}}{10^{2}}=\sum_{i=1}^{\infty} a_{i} 10^{-i}
\end{gathered}
$$

Numeration dynamics

Numeration dynamical systems are simple algorithms expressed in terms of dynamical systems that produce digits in classical representation systems

- Decimal expansions

$$
T:[0,1] \rightarrow[0,1], x \mapsto 10 x-[10 x]=\{10 x\}
$$

The map T produces the digits

$$
a_{n}=\left\lfloor 10 T^{n-1}(x)\right\rfloor
$$

From numeration dynamics to symbolic dynamics

- Decimal expansion $T:[0,1] \rightarrow[0,1], x \mapsto\{10 x\}$
- Beta-transformation $T:[0,1] \rightarrow[0,1], x \mapsto\{\beta x\}$
- Continued fractions $T:[0,1] \rightarrow[0,1], x \mapsto\{1 / x\}$

From numeration dynamics to symbolic dynamics

- Decimal expansion $T:[0,1] \rightarrow[0,1], x \mapsto\{10 x\}$
- Beta-transformation $T:[0,1] \rightarrow[0,1], x \mapsto\{\beta x\}$

$$
\beta>1 \quad x=\sum_{i=1}^{\infty} a_{i} \beta^{-i}
$$

- Continued fractions $T:[0,1] \rightarrow[0,1], x \mapsto\{1 / x\}$

$$
x=\frac{1}{a_{1}+x_{1}}=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{a_{4}+\cdots}}}}
$$

β-numeration [Rényi'57, Parry'60]

Let $\beta>1$. We consider the transformation

$$
T_{\beta}(x):[0,1] \rightarrow[0,1], x \mapsto \beta x-\lfloor\beta x\rfloor
$$

Let $\mathcal{A}_{\beta}:=\{0,1, \cdots,\lceil\beta\rceil-1\}$
Every real number $x \in[0,1]$ has an expansion of the form

$$
x=\sum_{i \geq 1} u_{i} \beta^{-i}
$$

with $u_{i}=\left\lfloor\beta T_{\beta}^{i-1}(x)\right\rfloor \in \mathcal{A}_{\beta}, \quad \forall i \geq 1$

Admissible expansions and β-shift

Expansion of 1

$$
1=\sum_{i \geq 1} t_{i} \beta^{-i}
$$

will be used in the admissibility condition

Admissible expansions and β-shift

Expansion of 1

$$
1=\sum_{i \geq 1} t_{i} \beta^{-i}
$$

will be used in the admissibility condition
Let $d_{\beta}(1)=\left(t_{n}\right)_{n \geq 1}$. We set
$\left\{d_{\beta}^{*}(1)=d_{\beta}(1)\right.$, if $d_{\beta}(1)$ is infinite
$\left\{d_{\beta}^{*}(1)=\left(t_{1} \ldots t_{m-1}\left(t_{m}-1\right)\right)^{\omega}\right.$, if $d_{\beta}(1)=t_{1} \ldots t_{m-1} t_{m} 0^{\omega}\left(t_{m} \neq 0\right)$

Tribonacci numeration

$$
\beta^{3}=\beta^{2}+\beta+1, d_{\beta}(1)=111, d_{\beta}^{*}(1)=110110110 \cdots
$$

Admissible expansions and β-shift

Expansion of 1

$$
1=\sum_{i \geq 1} t_{i} \beta^{-i}
$$

will be used in the admissibility condition

- The set of β-expansions of real numbers in $[0,1)$ is the set of sequences $\left(u_{n}\right)_{n \geq 1}$ with values in \mathcal{A}_{β} such that

$$
\forall k \geq 1,\left(u_{n}\right)_{n \geq k}<_{\operatorname{lex}} d_{\beta}^{*}(1)
$$

- The closure of this set is called the β-shift

$$
\forall k \geq 1,\left(u_{n}\right)_{n \geq k} \leq_{\operatorname{lex}} d_{\beta}^{*}(1)
$$

β-shift $=$ symbolic dynamical systems made of (bi-infinite) sequences of digits

Admissible expansions and β-shift

Expansion of 1

$$
1=\sum_{i \geq 1} t_{i} \beta^{-i}
$$

will be used in the admissibility condition
We assume that β is Pisot.
Let $d_{\beta}(1)$ be the expansion of 1 . Then, $d_{\beta}(1)$ is either finite or ultimately periodic.

The language of admissible words has a simple description as regular/sofic language

The finiteness property

- Fin (β) is the set of finite expansions
- $\operatorname{Per}(\beta)$ is the set of eventually periodic expansions
- $\operatorname{Fin}(\beta) \subset \operatorname{Per}(\beta)$

Theorem [Bertrand-Schmidt] Let β be a Pisot number

$$
\operatorname{Per}(\beta)=\mathbb{Q}(\beta) \cap \mathbb{R}_{+}
$$

The finiteness property

- Fin (β) is the set of finite expansions
- Per (β) is the set of eventually periodic expansions
- Fin $(\beta) \subset \operatorname{Per}(\beta)$

Theorem [Bertrand-Schmidt] Let β be a Pisot number

$$
\operatorname{Per}(\beta)=\mathbb{Q}(\beta) \cap \mathbb{R}_{+}
$$

The (F) property [Frougny-Solomyak'92]

$$
(F): \quad \operatorname{Fin}(\beta)=\mathbb{Z}\left[\beta^{-1}\right] \geq 0
$$

Theorem [Frougny-Solomyak'92] The finiteness property (F) implies that β is a Pisot number

A sufficient condition [Frougny-Solomyak'92] Let β be the positive root of

$$
X^{m}-a_{1} X^{m-1}-\cdots-a_{m} \text { where } a_{1} \geq a_{2} \geq a_{m} \cdots>0
$$

Then β is a Pisot number and β satisfies the (F) property

The finiteness property

- Fin (β) is the set of finite expansions
- $\operatorname{Per}(\beta)$ is the set of eventually periodic expansions
- Fin $(\beta) \subset \operatorname{Per}(\beta)$

Theorem [Bertrand-Schmidt] Let β be a Pisot number

$$
\operatorname{Per}(\beta)=\mathbb{Q}(\beta) \cap \mathbb{R}_{+}
$$

The (F) property [Frougny-Solomyak'92]

$$
(F): \quad \operatorname{Fin}(\beta)=\mathbb{Z}\left[\beta^{-1}\right] \geq 0
$$

Theorem [Frougny-Solomyak'92] The finiteness property (F) implies that β is a Pisot number

Theorem [Akiyama] The origin is an exclusive inner point of the central tile/Rauzy fractal if and only if (F) holds

Toward Rauzy fractals

- Under which conditions is it possible to give a geometric representation of the β-shift as a map acting on a compact group?
- How to characterize real numbers in $[0,1]$ that have a purely periodic expansion?
- How to characterize rational numbers in $[0,1]$ that have a purely periodic expansion?

Periodic decimal expansions

Real numbers having a purely periodic decimal expansion are the rationals $p / q(\operatorname{gcd}(p, q)=1)$ with q coprime with 10

Periodic decimal expansions

Real numbers having a purely periodic decimal expansion are the rationals $p / q(\operatorname{gcd}(p, q)=1)$ with q coprime with 10
Let

$$
T: \mathbb{Q} \cap[0,1] \rightarrow \mathbb{Q} \cap[0,1], x \mapsto 10 x-[10 x]=\{10 x\}
$$

Let $a / b \in[0,1]$ with b coprime with 10

$$
T(a / b)=\frac{10 a-[10 \cdot a / b] \cdot b}{b}=\frac{10 \cdot a \bmod b}{b}
$$

- Denominator of $T^{k}(a / b)=b$
- Numerator of $T^{k}(a / b)$ belongs to $\{0,1, \cdots, b-1\}$

Periodic decimal expansions

Real numbers having a purely periodic decimal expansion are the rationals $p / q(\operatorname{gcd}(p, q)=1)$ with q coprime with 10
Let

$$
T: \mathbb{Q} \cap[0,1] \rightarrow \mathbb{Q} \cap[0,1], x \mapsto 10 x-[10 x]=\{10 x\}
$$

Let $a / b \in[0,1]$ with b coprime with 10

$$
T(a / b)=\frac{10 a-[10 \cdot a / b] \cdot b}{b}=\frac{10 \cdot a \bmod b}{b}
$$

- Denominator of $T^{k}(a / b)=b$
- Numerator of $T^{k}(a / b)$ belongs to $\{0,1, \cdots, b-1\}$

We thus introduce

$$
\begin{gathered}
T_{b}^{\prime}: x \mapsto 10 \cdot x \bmod b \\
T_{b}^{\prime}(a) \sim \text { numerator of } T(a / b)
\end{gathered}
$$

We conclude by noticing that T_{b}^{\prime} is onto and thus one-to-one since we work on a finite set

Purely periodic β-expansions

Beta-numeration Let $\beta>1$. We expand real numbers $x \in[0,1]$ as

$$
x=\sum_{i \geq 1} u_{i} \beta^{-i}, \quad u_{i} \in\{0, \ldots,\lceil\beta\rceil-1\}, \forall i \geq 1
$$

A Lagrange theorem Theorem [K. Schmidt, A. Bertrand] If β is a Pisot number, then x has an eventually periodic expansion iff $x \in \mathbb{Q}(\beta)$

A Galois theorem Theorem[Ito-Sano-Hui, B.-Siegel]
If β is a Pisot number, then x has a purely periodic expansion iff $\left(x, x^{\prime}\right) \in \widetilde{\mathcal{R}_{\beta}}$.

Central tiles for the β-shift [Rauzy, Thurston]

- We first need to give a meaning to the notion of conjugate x^{\prime}
- We then are looking for a natural extension of the beta-transformation $T_{\beta}: x \mapsto\{\beta x\}$ which is not invertible
- We consider the past and future of orbits under T_{β}, i.e., the two-sided β-shift X_{β}

Central tiles for the β-shift [Rauzy, Thurston]

- We first need to give a meaning to the notion of conjugate x^{\prime}
- We then are looking for a natural extension of the beta-transformation $T_{\beta}: x \mapsto\{\beta x\}$ which is not invertible
- We consider the past and future of orbits under T_{β}, i.e., the two-sided β-shift X_{β}
To an element

$$
(w, u)=\left(\left(w_{i}\right)_{i \geq 0},\left(u_{i}\right)_{i \geq 1}\right) \in X_{\beta}
$$

we associate the formal power series

$$
\left(\sum_{i \geq 0} w_{i} X^{i}, \sum_{i \geq 1} u_{i} X^{-i}\right) \leadsto\left(\sum_{i \geq 0} w_{i} \beta^{i}, \sum_{i \geq 1} u_{i} \beta^{-i}\right)
$$

Central tiles for the β-shift [Rauzy, Thurston]

- We first need to give a meaning to the notion of conjugate x^{\prime}
- We then are looking for a natural extension of the beta-transformation $T_{\beta}: x \mapsto\{\beta x\}$ which is not invertible
- We consider the past and future of orbits under T_{β}, i.e., the two-sided β-shift X_{β}

To an element

$$
(w, u)=\left(\left(w_{i}\right)_{i \geq 0},\left(u_{i}\right)_{i \geq 1}\right) \in X_{\beta}
$$

we associate the formal power series

$$
\left(\sum_{i \geq 0} w_{i} X^{i}, \sum_{i \geq 1} u_{i} X^{-i}\right) \leadsto\left(\sum_{i \geq 0} w_{i} \beta^{i}, \sum_{i \geq 1} u_{i} \beta^{-i}\right)
$$

Meaning? Convergence?

Central tiles for the β-shift [Rauzy, Thurston]

- We first need to give a meaning to the notion of conjugate x^{\prime}
- We then are looking for a natural extension of the beta-transformation $T_{\beta}: x \mapsto\{\beta x\}$ which is not invertible
- We consider the past and future of orbits under T_{β}, i.e., the two-sided β-shift X_{β}
To an element

$$
(w, u)=\left(\left(w_{i}\right)_{i \geq 0},\left(u_{i}\right)_{i \geq 1}\right) \in X_{\beta}
$$

we associate the formal power series

$$
\left(\sum_{i \geq 0} w_{i} X^{i}, \sum_{i \geq 1} u_{i} X^{-i}\right) \leadsto\left(\sum_{i \geq 0} w_{i} \beta^{i}, \sum_{i \geq 1} u_{i} \beta^{-i}\right)
$$

Take the conjugates of β (Pisot) and the prime ideals in the integer ring $\mathcal{O}_{\mathbb{Q}(\beta)}$ of $\mathbb{Q}(\beta)$ that contain β

$$
\widetilde{\mathcal{R}_{\beta}} \subset \mathbb{R}^{d-1} \times \prod_{p \mid N(\beta)} \mathbb{Q}_{p}^{d_{p}} \times \mathbb{R}
$$

Tribonacci numeration

Let β stand for Tribonacci number (positive root of $X^{3}-X^{2}-X-1=0$). Let α be one of its conjugate complex roots. One has $\beta>1,|\alpha|<1$ and $d_{\beta}(1)=111$.
Let

$$
\mathcal{R}=\left\{\sum_{i \geq 0} \varepsilon_{i} \alpha^{i} ; \forall i, \varepsilon_{i} \in\{0,1\}, \varepsilon_{i} \varepsilon_{i+1} \varepsilon_{i+2}=0\right\}
$$

Purely periodic expansions of rational numbers

We assume that β is a Pisot unit
$\gamma(\beta)=\sup \{0<c<1$, every rational element in $[0, c[$ has a purely perio

$$
\gamma(\beta) \geq A \text { if } \operatorname{diag}[0, A] \subset \mathcal{R}_{\beta}
$$

Theorem [Akiyama] The origin is an exclusive inner point of the central tile/Rauzy fractal if and only if (F) holds

Theorem [Akiyama] If β is a Pisot unit satisfying the finiteness property, then $\gamma(\beta)>0$

Theorem [Adamczewski-Frougny-Siegel-Steiner] The quantity $\gamma(\beta)$ is irrational when β is a cubic Pisot unit (not totally real case)

And now

- Carry propagation \sim Interest of dynamical systems
- Finiteness property \sim Decision problems, transcendence
- Canonical Number Systems, Shift Radix Systems

$$
\sum_{n} M^{n} u_{n}
$$

