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Probabilistic automata (Rabin 1963)
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Probabilistic automata

Definition

An n-state probabilistic automaton over Σ is a triplet

P = (y , {Ma | a ∈ Σ}, x),

where

x is an initial stochastic (column) vector,

y ∈ {0, 1}n is the final (row) vector,

each Ma ∈ Rn×n is a stochastic matrix

Definition

The probability P associates to w = a1 . . . an ∈ Σ∗ is given by

PP(w) = yMan . . .Ma1x .
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Cut-point languages

Definition

For a stochastic automaton P and λ ∈ [0, 1] let

L≥(P, λ) = {w ∈ Σ∗ | PP(w) ≥ λ}

be a cut-point language and

L>(P, λ) = {w ∈ Σ∗ | PP(w) > λ}

a strict cut-point language.
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Cut-point languages

Known properties

Can define any regular language.

Not necessary regular: {anbn | n ∈ N} is a (strict) cut-point language (Turakainen
1969)

If cutpoint is isolated, meaning that (∃ϵ > 0)(∀w)(PP(w) /∈ (λ− ϵ, λ+ ϵ)) then
regular (Rabin 1963)

In the isolated case, at most exponential advantage over DFA size (Rabin 1963)
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Measure-Once Quantum Automata (1997)

Definition

An n-state MO-QFA, aka Moore-Crutchfield QFA over Σ is a triplet

Q = (P, {Ua | a ∈ Σ}, x),

Where x ∈ Cn is the initial vector with the property ||x || = 1,

P : Cn → Cn is a projection,

each Ua ∈ Cn×n is a unitary matrix. (U∗U = UU∗ = I )

Definition

The probability Q associates to w = a1 . . . an ∈ Σ∗ is given by

PQ(w) = ||PUan . . .Ua1x ||2,

where ||x || is the usual L2-norm of x .
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Cut-point languages (MO-QFA)

Known properties

For non-isolated cutpoint, simple examples of non-regular languages such as
{w | |w |a = |w |b}.
If cutpoint is isolated, then regular (Ablayev & al. 2000)

But then only group languages can be recognized (Brodsky & Pippenger 2002)

Example: Cannot recognize {a, b}∗a.
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Decidability questions

Classical vs. Quantum

L≥(A, λ) = ∅ L>(A, λ) = ∅
PFA Undecidable Undecidable

QFA Undecidable Decidable

(Blondel & al. (binary alphabet, 47 states) 2003, Hirvensalo (25 & 21 states) 2007.
Decidability assumes matrix entries from Q[i ])

8/36



Injectivity problem for MO-QFA

Definition

Given a MO-QFA Q, if the acceptance function of Q is injective, then we call Q
injective.

Main Theorem (The injectivity problem)

Given a MO-QFA Q, it is undecidable whether Q is injective.
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Post Correspondence Problem

PCP

Given a collection of word pairs (u1, v1), . . . , (un, vn) over an
alphabet ∆, decide if there exists a nonempty index
sequence i1 . . . ik so that

ui1ui2 . . . uik = vi1vi2 . . . vik?

Alternative formulation

Denote w = i1i2 . . . ik ∈ Σ∗, where Σ = {1, 2, . . . , n} and
define morphisms h, g : Σ∗ → ∆∗ by h(ij) = uij , and
g(ij) = vij . Does there exist a w ∈ Σ+ so that

h(w) = g(w)?

Figure: An easy case? (3
pairs)

https://webdocs.cs.ualberta.ca/˜games/PCP/list.htm
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Mixed Post Correspondence Problem

Mixed PCP

Given two morphisms h, g : Σ∗ → ∆∗, decide if there exists a word
w = w1 . . .wn ∈ ∆+ so that

h1(w1) . . . hn(wn) = g1(w1) . . . gn(wn),

where hi , gi ∈ {h, g} and at least one hj ̸= gj .

Theorem: Mixed PCP is undecidable
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Injectivity problem for MO-QFA

Unitary embedding

Let Ua and Ub be unitary matrices generating a free group. Then there is an
embedding w → Uw from alphabet {a, b} into the group ⟨Ua,Ub⟩.
Let h, g : Σ → {a, b}∗ be morphisms of a mixed PCP instance. Let also
e : Σ → {a, b}∗ be an embedding.

For each σ ∈ Σ define two unitary matrices X h
σ = Ue(σ) ⊕ Uh(σ) and

X g
σ = Ue(σ) ⊕ Ug(σ), and let X be the union of those matrices.

Define a QFA with matrices X and input alphabet Σ× {g , h}.
For an input word w = (σ1, f1) . . . (σn, fn) = (u, v) we have
Xw = (Ue(σ1) ⊕ Uf1(σ1)) . . . (Ue(σn) ⊕ Ufn(σn)) = Ue(u) ⊕ Ufv (u), where
fv (u) = f1(σ1) . . . fn(σn). Hence

Xw1 = Xw2 ⇐⇒ Ue(u1) ⊕ Ufv1 (u1)
= Ue(u2) ⊕ Ufv2 (u2)

⇐⇒ u1 = u2 = u and
fv1(u) = fv2(u).
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Injectivity problem for MO-QFA

Notice that:

Mixed PCP has a solution iff there are words w1 ̸= w2 so that Xw1 = Xw2

The construction requires unitary embedding w → Uw , X
f
σ = Ue(σ) ⊕ Uf (σ)

However, the mapping Xw → ||PXwx ||2 may not be injective, meaning that the
acceptance probability does not uniquely determine Xw .
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Embedding to Binary Alphabet

Embedding of γ1

Let Σn = {a1, . . . , an} and Σ2 = {a, b}. Then γ1 : Σn → Σ∗
2 is an embedding where

γ1(ak) = akb

Extension

Can be extended to γ1 : Σ
∗
n → Σ∗

2 by γ1(w1w2 · · ·wk) = γ1(w1)γ1(w2 · · ·wk).
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Embedding to Quaternions

Embedding of γ2

Let Σ2 = {a, b} and define γ2 : Σ2 → H(Q) by γ2(a) = (35 ,
4
5 i, 0, 0) and

γ2(b) = (35 , 0,
4
5 j, 0) with γ2(ε) = I4. Note that {γ2(a), γ2(b)} represent rotations

about perpendicular axes by a rational angle

Theorem (Swierczkowski)

If cos(θ) ∈ Q then the subgroup of SO3(R) generated by rotations of angle θ
about two perpendicular axes is free iff cos(θ) ̸= 0,±1

2 ,±1.

Proposition

Thus ⟨γ2(a), γ2(b)⟩ is freely generated and γ2 is an injective homomorphism
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Embedding to Unitary Matrices

Embedding of γ3 : H(Q) → Q4×4

γ3(γ2(a)) = Ua =
1

5


3 4 0 0

−4 3 0 0
0 0 3 4
0 0 −4 3

 , γ3(γ2(b)) = Ub =
1

5


3 0 4 0
0 3 0 −4

−4 0 3 0
0 4 0 3


Denote Uw = Uw1 . . .Uwn and R1(Uw ) = (|(Uw )11| , |(Uw )12| , |(Uw )13|).

Theorem

Ua and Ub generate a free group.

If R1(Uu) = R1(Uv ), then u = v .

Requires analysis of quaternion structure for γ2(a) and γ2(b).
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Our injective homomorhism γ

Final embedding

By the previous observations γ : Σ∗
k → Q4×4 is an injective homomorphism, where

γ(w) = γ3(γ2(γ1(w)))
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Injectivity problem for MO-QFA

Observation

Matrix X fv
u = Ue(u) ⊕ Ufv (u) is fully determined by R1(Ue(u)) and R1(Uf (u)).

Mixed PCP has a solution iff there is (u1, v1) = w1 ̸= w2 = (u2, v2) so that
R1(Ue(u1)) = R1(Ue(u2)) (which implies u1 = u2 = u) and
R1(Ufv1 (u)

) = R1(Ufv2 (u)
)

Mixed PCP has a solution iff there is (u1, v1) = w1 ̸= w2 = (u2, v2) so that

(|Xw1 |11 , |Xw1 |12 , |Xw1 |13 , |Xw1 |55 , |Xw1 |56 , |Xw1 |57)
= (|Xw2 |11 , |Xw2 |12 , |Xw2 |13 , |Xw2 |55 , |Xw2 |56 , |Xw2 |57)
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Tools

Lemma

a) There exist MO-QFA Q0 and Q1 so that PQ0(w) = 0 and PQ1(w) = 1 for each
w ∈ Σ∗.

b) Given two MO-QFA’s Q1 and Q2, complex numbers α and β so that

|α|2 + |β|2 = 1, there exists

b.1) A MO-QFA Q so that PQ(w) = PQ1(w)PQ2(w)

b.2) A MO-QFA Q so that PQ(w) = |α|2 PQ1(w) + |β|2 PQ2(w)

Proof

a) Trivial b.1) Tensor product construction b.2) Direct sum construction

Observation

If P = diag(0, . . . , 1, . . . , 0) (jth position) and x = (0, . . . , 1, . . . , 0) (ith position), then

||PUx ||2 = |Uij |2 .
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Undecidability

Reduction to Mixed PCP

According to a previous observation, there is a MO-QFA which, on input
w = (u, v), produces output (acceptance probability)

|(Xw )ij |2 =
∣∣(Ue(u) ⊕ Ufv (u))ij

∣∣2
From the construction tools, it follows that there exists a MO-QFA producing
output (acceptance probability)

|λ1|2 |(Xw )11|2 + |λ2|2 |(Xw )12|2 + |λ3|2 |(Xw )13|2

+ |κ1|2 |(Xw )55|2 + |κ2|2 |(Xw )56|2 + |κ3|2 |(Xw )57|2 , (1)

where λ1, λ2, λ3, κ1, κ2, κ3 are complex numbers satisfying
|λ1|2 + |λ2|2 + |λ3|2 + |κ1|2 + |κ2|2 + |κ3|2 = 1

Mixed PCP has a solution if and only if the same acceptance probability (1) can
be obtained for at least two words w1 ̸= w2 (Meaning that the automaton is
ambiguous or not injective)

20/36



Undecidability

Conclusion

For the final conclusion, we have to be sure that mapping

(|X11| , |X12| , |X13| , |X55| , |X56| , |X57|)
→ |λ1|2 |X11|2 + |λ2|2 |X12|2 + |λ3|2 |X13|2

+ |κ1|2 |X55|2 + |κ2|2 |X56|2 + |κ3|2 |X57|2

is injective.

If now |λ1|2, . . ., |κ1|2, . . ., (can be introduced in the initial vector by
construction) are linearly independent over Q, we can conclude that the matrix
elements |X11|2, . . . uniquely determines the probability.
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Undecidability

Forcing linear independence

Theorem: If ni are coprime integers, then
√
ni are linearly independent over Q.

We can then choose λ1 = 4
√
n1, . . . and a renormalizaton factor to introduce

linear independence and the case is closed. QED

Is this an elegant solution for linear independence? Depends on the judge / no

Any better? Only using rational numbers?
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Solution using only rationals?

Observation

Given a multivariate polynomial f ∈ N0[x1, . . . , x6], the construction tools and
some other tricks give a λ ∈ Q+ and a QFA Q so that

PQ(w) = λf (|X11|2 , |X12|2 , |X13|2 , |X55|2 , |X56|2 , |X57|2).

Does there exist a multivariate polynomial f ∈ N0[x1, . . . , x6] which is injective on
rational numbers?
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Finding injections

Problems

Does there exist a multivariate polynomial f ∈ N0[x1, . . . , xn] so that f : Qn → Q
is an injection?

Does there exist a multivariate polynomial f ∈ N0[x1, . . . , xn] so that
f : Qn

≥0 → Q≥0 is an injection?

Does there exist a bivariate polynomial f2 ∈ N0[x , y ] so that
f2 : Q≥0 ×Q≥0 → Q≥0 is an injection?

If we have an injection f2 for n = 2 then it can be extended:

f3(x , y , z) = f2(x , f2(y , z)), f4(x , y , z ,w) = f2(x , f2(y , f2(z ,w))), etc.

Does there exist a bivariate polynomial f ∈ N0[x , y ] so that f : Λ× Λ → Λ is an
injection? Here Λ = { a

5k
| k ∈ N, a ∈ N0, 0 ≤ a ≤ 5k}.
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Finding injections

Theorem (Cantor pairing)

C : N0 × N0 → N0,C (x , y) =
1

2
(x + y + 1)(x + y) + x

is a bijection. C (0, 0) = 0, C (0, 1) = 1, C (1, 0) = 2, C (0, 2) = 3, C (1, 1) = 4, . . ..

Remark

No degree 2 polynomial bijections exist other than C (x , y) and C (y , x) (Fueter &
Pólya, 1923; Vsemirnov, 2001)

No degree > 2 polynomial bijection N0 × N0 → N0 exists (P.W. Adriaans 2018)

25/36



Finding injections

Observation

C

(
2

25
,
11

25

)
=

297

625
= C

(
3

25
,
9

25

)
.

More genererally, if 2a+ b = 2c + d and e = a+ b + c + d , then

C

(
a

e
,
b

e

)
= C

(
c

e
,
d

e

)
.
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Finding injections

G. Cornelissen 1999:

Question (Harvey Friedman): Does there exist a polynomial injection Q×Q → Q?

Reply (Don Zagier): Sure, almost all complex enough polynomials will do, for
example x7 + 3y7 is most likely a desired injection.
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Finding injections

Theorem (Poonen 2010)

Assume that there is a homogenous polynomial F (x , y) over rationals so that the
rational points in the projective surface X defined as F (x , y) = F (z ,w) are not Zariski
dense in X . Then there exists a polynomial injection f : Q×Q → Q.

Conjecture (Bombieri-Lang)

If X is a smooth projective irreducible algebraic surface over rationals of general type.
Then the set of rational points of X is not Zariski dense in X .

Remark

“General type” in the above definition refers to the Kodaira dimension. It suffices that
F (x , y) is separable, homogenous, and of degree at least 5 (Poonen 2010)

Remark (Cornelissen 1999)

From the (generalized) abc-conjecture it follows that f (x , y) = xn + 3yn defines an
injection Q×Q → Q if (odd) n is large enough.
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Rational Pairing Function

Theorem

Let Λ =
{

a
5k
|a, k ∈ N0, a < 5k

}
. Then f : Λ× Λ → 25Λ is an injection, where:

f (x , y) = (x4 + y4)3 + x4

Note

We can estimate the value f (x , y) as

|(x4 + y4)3 + x4| ≤ (1 + 1)3) + 1 = 9 < 25

thus f (x , y) ∈ 25Λ thus an injection f ′ : Λ× Λ → Λ can be found be introducing.a
normalization factor 1

25

Injectivity follows from elementary number theory / Fermat’s little theorem
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QFA without radicals

Unique matrix products

As before we can use our monomorphism γ : Σ∗ → Q4×4 so that it is undecidable to
determine if there exists a matrix in the following semigroup with two different
factorizations:

Γ = ⟨{γ(xj)⊕ γ(h(xj)), γ(xj)⊕ γ(g(xj))|1 ≤ j ≤ |Σ|}⟩ ⊆ Q8×8

Unique encoding of matrix

As before, each element of Γ is uniquely determined by six elements:

|X1,1|, |X1,2|, |X1,3|, |X5,5|, |X5,6|, |X5,7|

and thus by
x = (X 2

1,1,X
2
1,2,X

2
1,3,X

2
5,5,X

2
5,6,X

2
5,7)
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Embedding to QFA without radicals

Encoding the polynomial

As before, let f2(x , y) = (x4 + y4)3 + x4 and then define:

f6(x1, . . . , x6) = f2(x1, f2(x2, f2(x3, f2(x4, f2(x5, x6)))))

of degree d = 125

Proof Idea

Thus, f6(x) = f6(X
2
1,1,X

2
1,2,X

2
1,3,X

2
5,5,X

2
5,6,X

2
5,7) uniquely determines X
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Embedding to QFA without radicals

Encoding to matrices

f6(x) =
d∑

i=1

Ti (x) =
d∑

i=1

t(i)∑
j=1

Ti ,j(x) =
d∑

i=1

t(i)∑
j=1

ci ,jRi ,j(x) ci ,j ∈ N

=
d∑

i=1

t(i)∑
j=1

ci ,j

i∏
m=1

ai ,j ,m ai ,j ,m ∈ {|X1,1|, |X1,2|, |X1,3|, |X5,5|, |X5,6|, |X5,7|}

=
d∑

i=1

t(i)∑
j=1

4∑
k=1

d2
i ,j ,k

i∏
m=1

ai ,j ,m Lagrange’s Theorem
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Embedding to Matrices

Embedding

Let us consider a particular term ci ,jRi ,j , of degree i ≤ deg(f6) = 125. Note that there
exists 1 ≤ s, r ≤ 8i such that X⊗i

s,r = Ri ,j(x)

Theorem

Define u′i ,j ,k = di ,j ,k · er ∈ Q8i and P ′
i ,j = ese

T
s ∈ Q8i×8i and then:

P ′
i ,jX

⊗iu′i ,j ,k = di ,j ,kRi ,j(x)
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Encoding the rational pairing function

Embedding

Finally then define Pi ,j = ⊕4
k=1P

′
i ,j , ui ,j = ⊕4

k=1u
′
i ,j ,k and ζi ,j = ⊕4

k=1X
⊗i

Valuation

||Pi ,jζi ,j(X )u||2 =

∣∣∣∣∣
∣∣∣∣∣

4⊕
k=1

P ′
i ,jζ

′
i ,j(X )di ,j ,ku

′

∣∣∣∣∣
∣∣∣∣∣
2

=


√√√√ 4∑

k=1

d2
i ,j ,kRi ,j(x)2

2

=
4∑

k=1

d2
i ,j ,kRi ,j(x)

2 = ci ,jRi ,j(x
2)
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Final thoughts

Final embedding

With some more work we can embed the entire polynomial using tensor products and
direct sums

Theorem

The injectivity problem for measure-once quantum finite automata is undecidable for
< 4 ∗ 8125+5 states.
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Final thoughts

Open problem

Is the knapsack variant of injectivity undecidable for MO-QFA?

Example

Given Q = (P, {U1, . . .Uℓ}, x), does there exist distinct k1, . . . , kℓ, k
′
1, . . . , k

′
ℓ ≥ 0 such

that:
||PUk1

1 · · ·Ukℓ
ℓ x ||2 = ||PUk ′

1
1 · · ·Uk ′

ℓ
ℓ x ||2
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