The Sum of Square Roots Problem

Based on joint work with Samir Datta (Chennai Mathematical Institute)

Nikhil Balaji

IIT Delhi

July 10, 2023

WORReLL@ ICALP'23

The Problem

SSR
Input: Positive integers $1 \leq a_{1}, \ldots, a_{n} \leq 2^{n}$ and signs $\delta_{1}, \ldots, \delta_{n} \in\{ \pm 1\}$

The Problem

SSR

Input: Positive integers $1 \leq a_{1}, \ldots, a_{n} \leq 2^{n}$ and signs $\delta_{1}, \ldots, \delta_{n} \in\{ \pm 1\}$
Output: $\operatorname{sgn}\left(\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}\right)$

The Problem

SSR

Input: Positive integers $1 \leq a_{1}, \ldots, a_{n} \leq 2^{n}$ and signs $\delta_{1}, \ldots, \delta_{n} \in\{ \pm 1\}$ Output: $\operatorname{sgn}\left(\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}\right)$

- Fundamental primitive in Computational Geometry.

An application: Shortest paths in graphs

Shortest paths in graphs embedded in \mathbb{Z}^{n}

The Problem

SSR

Input: Positive integers $1 \leq a_{1}, \ldots, a_{n} \leq 2^{n}$ and signs $\delta_{1}, \ldots, \delta_{n} \in\{ \pm 1\}$
Output: $\operatorname{sgn}\left(\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}\right)$

- Fundamental primitive in Computational Geometry.
- Shortest paths in graphs embedded in \mathbb{Z}^{n} is in P relative to SSR.

The Problem

SSR

Input: Positive integers $1 \leq a_{1}, \ldots, a_{n} \leq 2^{n}$ and signs $\delta_{1}, \ldots, \delta_{n} \in\{ \pm 1\}$
Output: $\operatorname{sgn}\left(\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}\right)$

- Fundamental primitive in Computational Geometry.
- Shortest paths in graphs embedded in \mathbb{Z}^{n} is in P relative to SSR .
- Example due to Ron Graham:
$\sqrt{1000001}+\sqrt{1000025}+\sqrt{1000031}+\sqrt{1000084}+\sqrt{1000087}+$ $\sqrt{1000134}+\sqrt{1000158}+\sqrt{1000182}+\sqrt{1000198}-\sqrt{1000002}-$
$\sqrt{1000018}-\sqrt{1000042}-\sqrt{1000066}-\sqrt{1000113}-\sqrt{1000116}-$ $\sqrt{1000169}-\sqrt{1000175}-\sqrt{1000199}<10^{-34}$

The Problem

SSR

Input: Positive integers $1 \leq a_{1}, \ldots, a_{n} \leq 2^{n}$ and signs $\delta_{1}, \ldots, \delta_{n} \in\{ \pm 1\}$
Output: $\operatorname{sgn}\left(\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}\right)$

- Fundamental primitive in Computational Geometry.
- Shortest paths in graphs embedded in \mathbb{Z}^{n} is in P relative to SSR .
- Example due to Ron Graham:
$\sqrt{1000001}+\sqrt{1000025}+\sqrt{1000031}+\sqrt{1000084}+\sqrt{1000087}+$ $\sqrt{1000134}+\sqrt{1000158}+\sqrt{1000182}+\sqrt{1000198}-\sqrt{1000002}-$
$\sqrt{1000018}-\sqrt{1000042}-\sqrt{1000066}-\sqrt{1000113}-\sqrt{1000116}-$ $\sqrt{1000169}-\sqrt{1000175}-\sqrt{1000199}<10^{-34}$
- Is this problem even decidable?

The Problem

SSR

Input: Positive integers $1 \leq a_{1}, \ldots, a_{n} \leq 2^{n}$ and signs $\delta_{1}, \ldots, \delta_{n} \in\{ \pm 1\}$
Output: $\operatorname{sgn}\left(\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}\right)$

- Fundamental primitive in Computational Geometry.
- Shortest paths in graphs embedded in \mathbb{Z}^{n} is in P relative to SSR .
- Example due to Ron Graham:
$\sqrt{1000001}+\sqrt{1000025}+\sqrt{1000031}+\sqrt{1000084}+\sqrt{1000087}+$ $\sqrt{1000134}+\sqrt{1000158}+\sqrt{1000182}+\sqrt{1000198}-\sqrt{1000002}-$
$\sqrt{1000018}-\sqrt{1000042}-\sqrt{1000066}-\sqrt{1000113}-\sqrt{1000116}-$
$\sqrt{1000169}-\sqrt{1000175}-\sqrt{1000199}<10^{-34}$
- Is this problem even decidable?
- Yes! We need effective separation bounds.

Separation Bounds

Definition

A separation bound is a computable function sep : $E \rightarrow \mathbb{R}$ such that the value of any non-zero expression E is lower bounded by $\operatorname{sep}(E)$.

Separation Bounds

Definition

A separation bound is a computable function sep : $E \rightarrow \mathbb{R}$ such that the value of any non-zero expression E is lower bounded by $\operatorname{sep}(E)$.
For e.g, Let $\alpha=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}} \neq 0$. If $|\alpha| \neq 0$ then $|\alpha| \geq \operatorname{sep}(\alpha)$.

Separation Bounds

Definition

A separation bound is a computable function sep: $E \rightarrow \mathbb{R}$ such that the value of any non-zero expression E is lower bounded by $\operatorname{sep}(E)$.
For e.g, Let $\alpha=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}} \neq 0$. If $|\alpha| \neq 0$ then $|\alpha| \geq \operatorname{sep}(\alpha)$.
Can we prove good separation bounds?

Separation Bounds

Definition

A separation bound is a computable function sep: $E \rightarrow \mathbb{R}$ such that the value of any non-zero expression E is lower bounded by $\operatorname{sep}(E)$.
For e.g, Let $\alpha=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}} \neq 0$. If $|\alpha| \neq 0$ then $|\alpha| \geq \operatorname{sep}(\alpha)$.
Can we prove good separation bounds?

In practice, $O\left(n \log 2^{n}\right)=O\left(n^{2}\right)$-bit approximation (i.e., $\left.\left|p_{i}\right|,\left|q_{i}\right| \leq 2^{n^{2}}\right)$ is usually sufficient to infer the sign of α.

Some easy bounds

Some easy bounds

Lemma (CK'96, Blö'98, BFMS'00)

Let α be an algebraic integer of degree d and U be an upper bound on the absolute value of any conjugate of α. Then, $\operatorname{sep}(\alpha) \leq U^{1-d}$.

Some easy bounds

Lemma (CK'96, Blö'98, BFMS'00)

Let α be an algebraic integer of degree d and U be an upper bound on the absolute value of any conjugate of α. Then, $\operatorname{sep}(\alpha) \leq U^{1-d}$. i.e. if $|\alpha| \neq 0$, then $|\alpha|>U^{1-d}$.

Some easy bounds

Lemma (CK'96, Blö'98, BFMS'00)

Let α be an algebraic integer of degree d and U be an upper bound on the absolute value of any conjugate of α. Then, $\operatorname{sep}(\alpha) \leq U^{1-d}$. i.e. if $|\alpha| \neq 0$, then $|\alpha|>U^{1-d}$.

Proof. Since α is an algebraic integer, $\prod_{i=1}^{d} \alpha_{i} \in \mathbb{Z}$. Thus, $\left|\alpha \cdot U^{d-1}\right| \geq 1$.

Some easy bounds

Lemma (CK'96, Blö'98, BFMS'00)

Let α be an algebraic integer of degree d and U be an upper bound on the absolute value of any conjugate of α. Then, $\operatorname{sep}(\alpha) \leq U^{1-d}$. i.e. if $|\alpha| \neq 0$, then $|\alpha|>U^{1-d}$.

Proof. Since α is an algebraic integer, $\prod_{i=1}^{d} \alpha_{i} \in \mathbb{Z}$. Thus, $\left|\alpha \cdot U^{d-1}\right| \geq 1$.

Corollary

SSR can be solved in poly $(d \log U)$ time and poly $(\log d \log U)$ space

Some easy bounds

Lemma (CK'96, Blö'98, BFMS'00)

Let α be an algebraic integer of degree d and U be an upper bound on the absolute value of any conjugate of α. Then, $\operatorname{sep}(\alpha) \leq U^{1-d}$. i.e. if $|\alpha| \neq 0$, then $|\alpha|>U^{1-d}$.

Proof. Since α is an algebraic integer, $\prod_{i=1}^{d} \alpha_{i} \in \mathbb{Z}$. Thus, $\left|\alpha \cdot U^{d-1}\right| \geq 1$.

Corollary

SSR can be solved in poly $(d \log U)$ time and poly $(\log d \log U)$ space

- $|U| \leq n \sqrt{a_{n}} \leq n 2^{n / 2}$.

Some easy bounds

Lemma (CK'96, Blö'98, BFMS'00)

Let α be an algebraic integer of degree d and U be an upper bound on the absolute value of any conjugate of α. Then, $\operatorname{sep}(\alpha) \leq U^{1-d}$. i.e. if $|\alpha| \neq 0$, then $|\alpha|>U^{1-d}$.

Proof. Since α is an algebraic integer, $\prod_{i=1}^{d} \alpha_{i} \in \mathbb{Z}$. Thus, $\left|\alpha \cdot U^{d-1}\right| \geq 1$.

Corollary

SSR can be solved in poly $(d \log U)$ time and poly $(\log d \log U)$ space

- $|U| \leq n \sqrt{a_{n}} \leq n 2^{n / 2}$.
- For every $i,\left[\mathbb{Q}\left[\sqrt{a_{1}}, \ldots, \sqrt{a_{i}}\right]: \mathbb{Q}\left[\sqrt{a_{1}}, \ldots, \sqrt{a_{i-1}}\right] \leq 2 \Longrightarrow d \leq 2^{n}\right.$.

Some easy bounds

Lemma (CK'96, Blö'98, BFMS'00)

Let α be an algebraic integer of degree d and U be an upper bound on the absolute value of any conjugate of α. Then, $\operatorname{sep}(\alpha) \leq U^{1-d}$. i.e. if $|\alpha| \neq 0$, then $|\alpha|>U^{1-d}$.

Proof. Since α is an algebraic integer, $\prod_{i=1}^{d} \alpha_{i} \in \mathbb{Z}$. Thus, $\left|\alpha \cdot U^{d-1}\right| \geq 1$.

Corollary

SSR can be solved in poly $(d \log U)$ time and poly $(\log d \log U)$ space

- $|U| \leq n \sqrt{a_{n}} \leq n 2^{n / 2}$.
- For every $i,\left[\mathbb{Q}\left[\sqrt{a_{1}}, \ldots, \sqrt{a_{i}}\right]: \mathbb{Q}\left[\sqrt{a_{1}}, \ldots, \sqrt{a_{i-1}}\right] \leq 2 \Longrightarrow d \leq 2^{n}\right.$.

Some easy bounds

Lemma (CK'96, Blö'98, BFMS'00)

Let α be an algebraic integer of degree d and U be an upper bound on the absolute value of any conjugate of α. Then, $\operatorname{sep}(\alpha) \leq U^{1-d}$. i.e. if $|\alpha| \neq 0$, then $|\alpha|>U^{1-d}$.

Proof. Since α is an algebraic integer, $\prod_{i=1}^{d} \alpha_{i} \in \mathbb{Z}$. Thus, $\left|\alpha \cdot U^{d-1}\right| \geq 1$.

Corollary

SSR can be solved in poly $(d \log U)$ time and poly $(\log d \log U)$ space

- $|U| \leq n \sqrt{a_{n}} \leq n 2^{n / 2}$.
- For every $i,\left[\mathbb{Q}\left[\sqrt{a_{1}}, \ldots, \sqrt{a_{i}}\right]: \mathbb{Q}\left[\sqrt{a_{1}}, \ldots, \sqrt{a_{i-1}}\right] \leq 2 \Longrightarrow d \leq 2^{n}\right.$. The degree bound is tight - consider $a_{1}=2, \ldots a_{n}=p_{n}$, then the minimal polynomial of $\sum_{i=1}^{n} \sqrt{p_{i}}$ has degree exactly 2^{n}.

A hard (but tractable) subclass of SSR

Consider $\alpha=\sum_{i=1}^{n} \delta_{i} \sqrt{p_{i}} \Longrightarrow|\alpha| \geq 2^{-n 2^{n}}$

A hard (but tractable) subclass of SSR

Consider $\alpha=\sum_{i=1}^{n} \delta_{i} \sqrt{p_{i}} \Longrightarrow|\alpha| \geq 2^{-n 2^{n}}$

- By Prime number theorem, $p_{n}=O(n \log n)$.

A hard (but tractable) subclass of SSR

Consider $\alpha=\sum_{i=1}^{n} \delta_{i} \sqrt{p_{i}} \Longrightarrow|\alpha| \geq 2^{-n 2^{n}}$

- By Prime number theorem, $p_{n}=O(n \log n)$.

UnarySSR

Input: Positive integers $1 \leq a_{1}, \ldots, a_{n} \leq n^{2}$ and signs $\delta_{1}, \ldots, \delta_{n} \in\{ \pm 1\}$
Output: $\operatorname{sgn}\left(\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}\right)$

A hard (but tractable) subclass of SSR

Consider $\alpha=\sum_{i=1}^{n} \delta_{i} \sqrt{p_{i}} \Longrightarrow|\alpha| \geq 2^{-n 2^{n}}$

- By Prime number theorem, $p_{n}=O(n \log n)$.

UnarySSR

Input: Positive integers $1 \leq a_{1}, \ldots, a_{n} \leq n^{2}$ and signs $\delta_{1}, \ldots, \delta_{n} \in\{ \pm 1\}$
Output: $\operatorname{sgn}\left(\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}\right)$

- No better complexity bound known for even this "unary" case.

A hard (but tractable) subclass of SSR

UnarySSR

Input: Positive integers $1 \leq a_{1}, \ldots, a_{n} \leq n^{2}$ and signs $\delta_{1}, \ldots, \delta_{n} \in\{ \pm 1\}$ Output: $\operatorname{sgn}\left(\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}\right)$

Theorem (B.-Datta'20)
USSR \in P/Pdy

There is a non-uniform polynomial time algorithm for USSR.

- For every n, there exists a poly(n)-sized "advice" string which helps you decide the sign of any instance of "length" n.

A hard (but tractable) subclass of SSR

UnarySSR

Input: Positive integers $1 \leq a_{1}, \ldots, a_{n} \leq n^{2}$ and signs $\delta_{1}, \ldots, \delta_{n} \in\{ \pm 1\}$ Output: $\operatorname{sgn}\left(\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}\right)$

Theorem (B.-Datta'20)

There is a non-uniform polynomial time algorithm for USSR.

- For every n, there exists a poly(n)-sized "advice" string which helps you decide the sign of any instance of "length" n.
- Idea: Rewrite $\alpha=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}=\sum_{i=1}^{n^{2}} \gamma_{i} \sqrt{i}$ where $\gamma_{i} \in\{0, \pm 1\}$. Note: We have $2^{n^{2}}$ different instances of USSR at length n.

A hard (but tractable) subclass of SSR

UnarySSR

Input: Positive integers $1 \leq a_{1}, \ldots, a_{n} \leq n^{2}$ and signs $\delta_{1}, \ldots, \delta_{n} \in\{ \pm 1\}$ Output: $\operatorname{sgn}\left(\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}\right)$

Theorem (B.-Datta'20)

There is a non-uniform polynomial time algorithm for USSR.

- For every n, there exists a poly(n)-sized "advice" string which helps you decide the sign of any instance of "length" n.
- Idea: Rewrite $\alpha=\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}=\sum_{i=1}^{n^{2}} \gamma_{i} \sqrt{i}$ where $\gamma_{i} \in\{0, \pm 1\}$.

Theorem (Muroga'70)
There are integers $0 \leq\left|w_{i}\right| \leq 2^{n^{3}}, \sum_{i=1}^{n^{2}} \delta_{i} \sqrt{i}>0 \Longleftrightarrow \sum_{i=1}^{n^{2}} \delta_{i} w_{i}>0$

Aside: What about testing $=0$?

Aside: What about testing $=0$?

ExactSSR

Input: Positive integers $1 \leq a_{1}, \ldots, a_{n} \leq 2^{n}$ and signs $\delta_{1}, \ldots, \delta_{n} \in\{ \pm 1\}$ Output: 1 iff $\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}=0$

Aside: What about testing $=0$?

ExactSSR

Input: Positive integers $1 \leq a_{1}, \ldots, a_{n} \leq 2^{n}$ and signs $\delta_{1}, \ldots, \delta_{n} \in\{ \pm 1\}$ Output: 1 iff $\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}=0$

- In P (polynomial time)

Aside: What about testing $=0$?

ExactSSR

Input: Positive integers $1 \leq a_{1}, \ldots, a_{n} \leq 2^{n}$ and signs $\delta_{1}, \ldots, \delta_{n} \in\{ \pm 1\}$ Output: 1 iff $\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}=0$

- In \mathbf{P} (polynomial time), in fact in $\mathbf{T C}^{0}$ (BHMOW'10).

Aside: What about testing $=0$?

ExactSSR

Input: Positive integers $1 \leq a_{1}, \ldots, a_{n} \leq 2^{n}$ and signs $\delta_{1}, \ldots, \delta_{n} \in\{ \pm 1\}$
Output: 1 iff $\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}=0$

- In \mathbf{P} (polynomial time), in fact in $\mathbf{T C}^{0}$ (BHMOW'10).
- For any (given) polynomial f, checking $f\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right)=0$ is in coNP unconditionally and in coRP assuming GRH (BNSW'22).

Aside: What about testing $=0$?

ExactSSR

Input: Positive integers $1 \leq a_{1}, \ldots, a_{n} \leq 2^{n}$ and signs $\delta_{1}, \ldots, \delta_{n} \in\{ \pm 1\}$
Output: 1 iff $\sum_{i=1}^{n} \delta_{i} \sqrt{a_{i}}=0$

- In \mathbf{P} (polynomial time), in fact in $\mathbf{T C}^{0}$ (BHMOW'10).
- For any (given) polynomial f, checking $f\left(\sqrt{a_{1}}, \ldots, \sqrt{a_{n}}\right)=0$ is in coNP unconditionally and in coRP assuming GRH (BNSW'22).

Conclusion

Conclusion

- Better complexity upper bound for UnarySSR.

Conclusion

- Better complexity upper bound for UnarySSR.
- Corollary: UnarySSR cannot be NP-hard under widely believed complexity-theoretic assumptions.

Conclusion

- Better complexity upper bound for UnarySSR.
- Corollary: UnarySSR cannot be NP-hard under widely believed complexity-theoretic assumptions.
- Works for arbitrary but fixed set of real numbers, for eg. $\sum_{i=1}^{n} \delta_{i}(\pi e)^{i}$ where $\delta_{i} \in\{-d, \ldots, d\}$

Conclusion

- Better complexity upper bound for UnarySSR.
- Corollary: UnarySSR cannot be NP-hard under widely believed complexity-theoretic assumptions.
- Works for arbitrary but fixed set of real numbers, for eg. $\sum_{i=1}^{n} \delta_{i}(\pi e)^{i}$ where $\delta_{i} \in\{-d, \ldots, d\}$
- Question: Is there a short "witness" to test if a linear combination of square roots is positive?
- Applications to algorithmic questions in Diophantine approximation?

Conclusion

- Better complexity upper bound for UnarySSR.
- Corollary: UnarySSR cannot be NP-hard under widely believed complexity-theoretic assumptions.
- Works for arbitrary but fixed set of real numbers, for eg. $\sum_{i=1}^{n} \delta_{i}(\pi e)^{i}$ where $\delta_{i} \in\{-d, \ldots, d\}$
- Question: Is there a short "witness" to test if a linear combination of square roots is positive?
- Applications to algorithmic questions in Diophantine approximation?

Happy Birthday Ben!

