
1/7

The Sum of Square Roots Problem
Based on joint work with Samir Datta (Chennai Mathematical Institute)

Nikhil Balaji

IIT Delhi

July 10, 2023

Nikhil Balaji (IIT Delhi) Sum of Square Roots Problem WORReLL’23



2/7

The Problem

SSR

Input: Positive integers 1  a1, . . . , an  2n and signs �1, . . . , �n 2 {±1}

Output: sgn

✓
nP

i=1

�i
p
ai

◆
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An application: Shortest paths in graphs

Shortest paths in graphs embedded in Zn
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Fundamental primitive in Computational Geometry.

Shortest paths in graphs embedded in Zn is in P relative to SSR.

Example due to Ron Graham:p
1000001 +

p
1000025 +

p
1000031 +

p
1000084 +

p
1000087 +p

1000134 +
p
1000158 +

p
1000182 +

p
1000198�

p
1000002�p

1000018�
p
1000042�

p
1000066�

p
1000113�

p
1000116�p

1000169�
p
1000175�

p
1000199 < 10�34
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Is this problem even decidable?
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1000199 < 10�34

Is this problem even decidable?

Yes! We need e↵ective separation bounds.
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Separation Bounds

Definition
A separation bound is a computable function sep : E ! R such that the
value of any non-zero expression E is lower bounded by sep(E ).

For e.g, Let ↵ =
nP

i=1

�i
p
ai 6= 0. If |↵| 6= 0 then |↵| � sep(↵).

Can we prove good separation bounds?

In practice, O(n log 2n) = O(n2)-bit approximation (i.e., |pi |, |qi |  2n
2

) is
usually su�cient to infer the sign of ↵.
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Some easy bounds

Lemma (CK’96, Blö’98, BFMS’00)

Let ↵ be an algebraic integer of degree d and U be an upper bound on the
absolute value of any conjugate of ↵. Then, sep(↵)  U

1�d . i.e. if
|↵| 6= 0, then |↵| > U

1�d .

Proof. Since ↵ is an algebraic integer,
Qd

i=1
↵i 2 Z. Thus, |↵ ·Ud�1| � 1.

Corollary

SSR can be solved in poly(d logU) time and poly(log d logU) space

|U|  n
p
an  n2n/2.

For every i , [Q[
p
a1, . . . ,

p
ai ] : Q[

p
a1, . . . ,

p
ai�1]  2 =) d  2n .

The degree bound is tight - consider a1 = 2, . . . an = pn, then the minimal
polynomial of

Pn
i=1

p
pi has degree exactly 2n.
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Let ↵ be an algebraic integer of degree d and U be an upper bound on the
absolute value of any conjugate of ↵. Then, sep(↵)  U

1�d . i.e. if
|↵| 6= 0, then |↵| > U

1�d .

Proof. Since ↵ is an algebraic integer,
Qd

i=1
↵i 2 Z. Thus, |↵ ·Ud�1| � 1.

Corollary

SSR can be solved in poly(d logU) time and poly(log d logU) space

|U|  n
p
an  n2n/2.

For every i , [Q[
p
a1, . . . ,

p
ai ] : Q[

p
a1, . . . ,

p
ai�1]  2 =) d  2n .

The degree bound is tight - consider a1 = 2, . . . an = pn, then the minimal
polynomial of

Pn
i=1

p
pi has degree exactly 2n.

Nikhil Balaji (IIT Delhi) Sum of Square Roots Problem WORReLL’23



5/7

A hard (but tractable) subclass of SSR

Consider ↵ =
Pn

i=1
�i
p
pi =) |↵| � 2�n2n
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No better complexity bound known for even this “unary” case.
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A hard (but tractable) subclass of SSR

UnarySSR

Input: Positive integers 1  a1, . . . , an  n
2 and signs �1, . . . , �n 2 {±1}

Output: sgn
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nP

i=1
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ai

◆

Theorem (B.-Datta’20)

There is a non-uniform polynomial time algorithm for USSR.

For every n, there exists a poly(n)-sized “advice” string which helps
you decide the sign of any instance of “length” n.
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Theorem (B.-Datta’20)

There is a non-uniform polynomial time algorithm for USSR.

For every n, there exists a poly(n)-sized “advice” string which helps
you decide the sign of any instance of “length” n.

Idea: Rewrite ↵ =
Pn

i=1
�i
p
ai =

Pn2

i=1
�i
p
i where �i 2 {0,±1}.

Note: We have 2n
2

di↵erent instances of USSR at length n.
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Theorem (Muroga’70)

There are integers 0  |wi |  2n
3

,
Pn2

i=1
�i
p
i > 0 ()

Pn2

i=1
�iwi > 0
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Aside: What about testing = 0?

ExactSSR

Input: Positive integers 1  a1, . . . , an  2n and signs �1, . . . , �n 2 {±1}
Output: 1 i↵

nP
i=1

�i
p
ai = 0

In P (polynomial time), in fact in TC
0 (BHMOW’10).

For any (given) polynomial f , checking f (
p
a1, . . . ,

p
an) = 0 is in

coNP unconditionally and in coRP assuming GRH (BNSW’22).
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Conclusion

Better complexity upper bound for UnarySSR.

Corollary: UnarySSR cannot be NP-hard under widely believed
complexity-theoretic assumptions.

Works for arbitrary but fixed set of real numbers, for eg.Pn
i=1

�i (⇡e)i where �i 2 {�d , . . . , d}
Question: Is there a short “witness” to test if a linear combination of
square roots is positive?

Applications to algorithmic questions in Diophantine approximation?

Happy Birthday Ben!
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