The Sum of Square Roots Problem

Based on joint work with Samir Datta (Chennai Mathematical Institute)

Nikhil Balaji

IIT Delhi

July 10, 2023

WORReLL'23

1

・ロト ・ 四ト ・ ヨト ・ ヨト

SSR

Input: Positive integers $1 \le a_1, \ldots, a_n \le 2^n$ and signs $\delta_1, \ldots, \delta_n \in \{\pm 1\}$

2

・ロト ・ 四ト ・ ヨト ・ ヨト

SSR

Input: Positive integers $1 \le a_1, \ldots, a_n \le 2^n$ and signs $\delta_1, \ldots, \delta_n \in \{\pm 1\}$ **Output:** $\operatorname{sgn}\left(\sum_{i=1}^n \delta_i \sqrt{a_i}\right)$

æ

イロト イポト イヨト イヨト

SSR

Input: Positive integers $1 \le a_1, \ldots, a_n \le 2^n$ and signs $\delta_1, \ldots, \delta_n \in \{\pm 1\}$ **Output:** $\operatorname{sgn}\left(\sum_{i=1}^n \delta_i \sqrt{a_i}\right)$

• Fundamental primitive in Computational Geometry.

イロト イポト イヨト イヨト 二日 二

An application: Shortest paths in graphs

Shortest paths in graphs embedded in \mathbb{Z}^n

э

SSR

Input: Positive integers $1 \le a_1, \ldots, a_n \le 2^n$ and signs $\delta_1, \ldots, \delta_n \in \{\pm 1\}$ **Output:** $sgn\left(\sum_{i=1}^n \delta_i \sqrt{a_i}\right)$

- Fundamental primitive in Computational Geometry.
- Shortest paths in graphs embedded in \mathbb{Z}^n is in P relative to SSR.

æ

イロト イタト イヨト イヨト

SSR

Input: Positive integers $1 \le a_1, \ldots, a_n \le 2^n$ and signs $\delta_1, \ldots, \delta_n \in \{\pm 1\}$ **Output:** $sgn\left(\sum_{i=1}^n \delta_i \sqrt{a_i}\right)$

- Fundamental primitive in Computational Geometry.
- Shortest paths in graphs embedded in \mathbb{Z}^n is in P relative to SSR.
- Example due to Ron Graham: $\sqrt{1000001} + \sqrt{100025} + \sqrt{100031} + \sqrt{100084} + \sqrt{100087} + \sqrt{1000134} + \sqrt{1000158} + \sqrt{1000182} + \sqrt{1000198} - \sqrt{100002} - \sqrt{100018} - \sqrt{1000042} - \sqrt{100066} - \sqrt{1000113} - \sqrt{1000116} - \sqrt{1000169} - \sqrt{1000175} - \sqrt{1000199} < 10^{-34}$

SSR

Input: Positive integers $1 \le a_1, \ldots, a_n \le 2^n$ and signs $\delta_1, \ldots, \delta_n \in \{\pm 1\}$ **Output:** $sgn\left(\sum_{i=1}^n \delta_i \sqrt{a_i}\right)$

- Fundamental primitive in Computational Geometry.
- Shortest paths in graphs embedded in \mathbb{Z}^n is in P relative to SSR.
- Example due to Ron Graham: $\sqrt{1000001} + \sqrt{1000025} + \sqrt{1000031} + \sqrt{1000084} + \sqrt{1000087} + \sqrt{1000134} + \sqrt{1000158} + \sqrt{1000182} + \sqrt{1000198} - \sqrt{1000002} - \sqrt{1000018} - \sqrt{1000042} - \sqrt{1000066} - \sqrt{1000113} - \sqrt{1000116} - \sqrt{1000169} - \sqrt{1000175} - \sqrt{1000199} < 10^{-34}$
- Is this problem even decidable?

SSR

Input: Positive integers $1 \le a_1, \ldots, a_n \le 2^n$ and signs $\delta_1, \ldots, \delta_n \in \{\pm 1\}$ **Output:** $sgn\left(\sum_{i=1}^n \delta_i \sqrt{a_i}\right)$

- Fundamental primitive in Computational Geometry.
- Shortest paths in graphs embedded in \mathbb{Z}^n is in P relative to SSR.
- Example due to Ron Graham: $\sqrt{1000001} + \sqrt{1000025} + \sqrt{1000031} + \sqrt{1000084} + \sqrt{1000087} + \sqrt{1000134} + \sqrt{1000158} + \sqrt{1000182} + \sqrt{1000198} - \sqrt{1000002} - \sqrt{1000018} - \sqrt{1000042} - \sqrt{1000066} - \sqrt{1000113} - \sqrt{1000116} - \sqrt{1000169} - \sqrt{1000175} - \sqrt{1000199} < 10^{-34}$
- Is this problem even decidable?
- Yes! We need *effective separation bounds*.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Definition

A separation bound is a computable function $sep : E \to \mathbb{R}$ such that the value of any non-zero expression E is lower bounded by sep(E).

æ

Definition

A separation bound is a computable function $sep : E \to \mathbb{R}$ such that the value of any non-zero expression E is lower bounded by sep(E). For e.g, Let $\alpha = \sum_{i=1}^{n} \delta_i \sqrt{a_i} \neq 0$. If $|\alpha| \neq 0$ then $|\alpha| \ge sep(\alpha)$.

Definition

A separation bound is a computable function $sep : E \to \mathbb{R}$ such that the value of any non-zero expression E is lower bounded by sep(E). For e.g, Let $\alpha = \sum_{i=1}^{n} \delta_i \sqrt{a_i} \neq 0$. If $|\alpha| \neq 0$ then $|\alpha| \ge sep(\alpha)$.

Can we prove good separation bounds?

Definition

A separation bound is a computable function $sep : E \to \mathbb{R}$ such that the value of any non-zero expression E is lower bounded by sep(E). For e.g, Let $\alpha = \sum_{i=1}^{n} \delta_i \sqrt{a_i} \neq 0$. If $|\alpha| \neq 0$ then $|\alpha| \ge sep(\alpha)$.

Can we prove good separation bounds?

In practice, $O(n \log 2^n) = O(n^2)$ -bit approximation (i.e., $|p_i|, |q_i| \le 2^{n^2}$) is usually sufficient to infer the sign of α .

◆□▶ ◆□▶ ◆ □▶ ★ □▶ ● □ ● ○ ○ ○

Nikhil Balaji (IIT Delhi)

Sum of Square Roots Problem

WORReLL'23

イロト イポト イヨト イヨト

≡ ∽ へ ~ 4/7

Lemma (CK'96, Blö'98, BFMS'00)

Let α be an algebraic integer of degree d and U be an upper bound on the absolute value of any conjugate of α . Then, $sep(\alpha) \leq U^{1-d}$.

æ

Lemma (CK'96, Blö'98, BFMS'00)

Let α be an algebraic integer of degree d and U be an upper bound on the absolute value of any conjugate of α . Then, $sep(\alpha) \leq U^{1-d}$. i.e. if $|\alpha| \neq 0$, then $|\alpha| > U^{1-d}$.

æ

Lemma (CK'96, Blö'98, BFMS'00)

Let α be an algebraic integer of degree d and U be an upper bound on the absolute value of any conjugate of α . Then, $sep(\alpha) \leq U^{1-d}$. i.e. if $|\alpha| \neq 0$, then $|\alpha| > U^{1-d}$.

Proof. Since α is an algebraic integer, $\prod_{i=1}^{d} \alpha_i \in \mathbb{Z}$. Thus, $|\alpha \cdot U^{d-1}| \ge 1$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = □ の Q ()

Lemma (CK'96, Blö'98, BFMS'00)

Let α be an algebraic integer of degree d and U be an upper bound on the absolute value of any conjugate of α . Then, $sep(\alpha) \leq U^{1-d}$. i.e. if $|\alpha| \neq 0$, then $|\alpha| > U^{1-d}$.

Proof. Since α is an algebraic integer, $\prod_{i=1}^{d} \alpha_i \in \mathbb{Z}$. Thus, $|\alpha \cdot U^{d-1}| \ge 1$.

Corollary

SSR can be solved in $poly(d \log U)$ time and $poly(\log d \log U)$ space

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = □ の Q ()

Lemma (CK'96, Blö'98, BFMS'00)

Let α be an algebraic integer of degree d and U be an upper bound on the absolute value of any conjugate of α . Then, $sep(\alpha) \leq U^{1-d}$. i.e. if $|\alpha| \neq 0$, then $|\alpha| > U^{1-d}$.

Proof. Since α is an algebraic integer, $\prod_{i=1}^{d} \alpha_i \in \mathbb{Z}$. Thus, $|\alpha \cdot U^{d-1}| \ge 1$.

Corollary

SSR can be solved in $poly(d \log U)$ time and $poly(\log d \log U)$ space

•
$$|U| \leq n\sqrt{a_n} \leq n2^{n/2}$$
.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = □ の Q ()

Lemma (CK'96, Blö'98, BFMS'00)

Let α be an algebraic integer of degree d and U be an upper bound on the absolute value of any conjugate of α . Then, $sep(\alpha) \leq U^{1-d}$. i.e. if $|\alpha| \neq 0$, then $|\alpha| > U^{1-d}$.

Proof. Since α is an algebraic integer, $\prod_{i=1}^{d} \alpha_i \in \mathbb{Z}$. Thus, $|\alpha \cdot U^{d-1}| \ge 1$.

Corollary

SSR can be solved in $poly(d \log U)$ time and $poly(\log d \log U)$ space

•
$$|U| \leq n\sqrt{a_n} \leq n2^{n/2}$$
.

• For every $i, [\mathbb{Q}[\sqrt{a_1}, \dots, \sqrt{a_i}] : \mathbb{Q}[\sqrt{a_1}, \dots, \sqrt{a_{i-1}}] \le 2 \implies d \le 2^n$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ - □ - のへぐ

Lemma (CK'96, Blö'98, BFMS'00)

Let α be an algebraic integer of degree d and U be an upper bound on the absolute value of any conjugate of α . Then, $sep(\alpha) \leq U^{1-d}$. i.e. if $|\alpha| \neq 0$, then $|\alpha| > U^{1-d}$.

Proof. Since α is an algebraic integer, $\prod_{i=1}^{d} \alpha_i \in \mathbb{Z}$. Thus, $|\alpha \cdot U^{d-1}| \ge 1$.

Corollary

SSR can be solved in $poly(d \log U)$ time and $poly(\log d \log U)$ space

•
$$|U| \leq n\sqrt{a_n} \leq n2^{n/2}$$
.

• For every $i, [\mathbb{Q}[\sqrt{a_1}, \dots, \sqrt{a_i}] : \mathbb{Q}[\sqrt{a_1}, \dots, \sqrt{a_{i-1}}] \le 2 \implies d \le 2^n$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ - □ - のへぐ

Lemma (CK'96, Blö'98, BFMS'00)

Let α be an algebraic integer of degree d and U be an upper bound on the absolute value of any conjugate of α . Then, $sep(\alpha) \leq U^{1-d}$. i.e. if $|\alpha| \neq 0$, then $|\alpha| > U^{1-d}$.

Proof. Since α is an algebraic integer, $\prod_{i=1}^{d} \alpha_i \in \mathbb{Z}$. Thus, $|\alpha \cdot U^{d-1}| \ge 1$.

Corollary

SSR can be solved in $poly(d \log U)$ time and $poly(\log d \log U)$ space

•
$$|U| \leq n\sqrt{a_n} \leq n2^{n/2}$$
.

• For every i, $[\mathbb{Q}[\sqrt{a_1}, \dots, \sqrt{a_i}] : \mathbb{Q}[\sqrt{a_1}, \dots, \sqrt{a_{i-1}}] \le 2 \implies d \le 2^n$. The degree bound is tight - consider $a_1 = 2, \dots, a_n = p_n$, then the minimal polynomial of $\sum_{i=1}^n \sqrt{p_i}$ has degree exactly 2^n .

◆□▶ < @ ▶ < E ▶ < E ▶ E のQ @ 4/7</p>

A hard (but tractable) subclass of SSR Consider $\alpha = \sum_{i=1}^{n} \delta_i \sqrt{p_i} \implies |\alpha| \ge 2^{-n2^n}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ● 5/7

Consider $\alpha = \sum_{i=1}^{n} \delta_i \sqrt{p_i} \implies |\alpha| \ge 2^{-n2^n}$

• By Prime number theorem, $p_n = O(n \log n)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Consider $\alpha = \sum_{i=1}^{n} \delta_i \sqrt{p_i} \implies |\alpha| \ge 2^{-n2^n}$

• By Prime number theorem, $p_n = O(n \log n)$.

UnarySSR

Input: Positive integers $1 \le a_1, ..., a_n \le n^2$ and signs $\delta_1, ..., \delta_n \in \{\pm 1\}$ **Output:** $sgn\left(\sum_{i=1}^n \delta_i \sqrt{a_i}\right)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

Consider $\alpha = \sum_{i=1}^{n} \delta_i \sqrt{p_i} \implies |\alpha| \ge 2^{-n2^n}$

• By Prime number theorem, $p_n = O(n \log n)$.

UnarySSR

Input: Positive integers $1 \le a_1, \ldots, a_n \le n^2$ and signs $\delta_1, \ldots, \delta_n \in \{\pm 1\}$ **Output:** $sgn\left(\sum_{i=1}^n \delta_i \sqrt{a_i}\right)$

• No better complexity bound known for even this "unary" case.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

UnarySSR

Input: Positive integers $1 \le a_1, ..., a_n \le n^2$ and signs $\delta_1, ..., \delta_n \in \{\pm 1\}$ **Output:** $sgn\left(\sum_{i=1}^n \delta_i \sqrt{a_i}\right)$

Theorem (B.-Datta'20)

USSR & P/poly

There is a non-uniform polynomial time algorithm for USSR.

• For every *n*, there exists a *poly*(*n*)-sized "advice" string which helps you decide the sign of any instance of "length" *n*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

UnarySSR

Input: Positive integers $1 \le a_1, \ldots, a_n \le n^2$ and signs $\delta_1, \ldots, \delta_n \in \{\pm 1\}$ **Output:** $sgn\left(\sum_{i=1}^n \delta_i \sqrt{a_i}\right)$

Theorem (B.-Datta'20)

There is a non-uniform polynomial time algorithm for USSR.

- For every *n*, there exists a *poly*(*n*)-sized "advice" string which helps you decide the sign of any instance of "length" *n*.
- Idea: Rewrite $\alpha = \sum_{i=1}^{n} \delta_i \sqrt{a_i} = \sum_{i=1}^{n^2} \gamma_i \sqrt{i}$ where $\gamma_i \in \{0, \pm 1\}$. Note: We have 2^{n^2} different instances of USSR at length *n*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

UnarySSR

Input: Positive integers $1 \le a_1, \ldots, a_n \le n^2$ and signs $\delta_1, \ldots, \delta_n \in \{\pm 1\}$ **Output:** $sgn\left(\sum_{i=1}^n \delta_i \sqrt{a_i}\right)$

Theorem (B.-Datta'20)

There is a non-uniform polynomial time algorithm for USSR.

- For every *n*, there exists a *poly*(*n*)-sized "advice" string which helps you decide the sign of any instance of "length" *n*.
- Idea: Rewrite $\alpha = \sum_{i=1}^{n} \delta_i \sqrt{a_i} = \sum_{i=1}^{n^2} \gamma_i \sqrt{i}$ where $\gamma_i \in \{0, \pm 1\}$.

Theorem (Muroga'70)

There are integers $0 \le |w_i| \le 2^{n^3}$, $\sum_{i=1}^{n^2} \delta_i \sqrt{i} > 0 \iff \sum_{i=1}^{n^2} \delta_i w_i > 0$

Nikhil Balaji (IIT Delhi)

Sum of Square Roots Problem

WORReLL'23

ヨー うくぐ

6/7

イロト イロト イヨト イヨト

ExactSSR

Input: Positive integers $1 \le a_1, \ldots, a_n \le 2^n$ and signs $\delta_1, \ldots, \delta_n \in \{\pm 1\}$ **Output:** 1 iff $\sum_{i=1}^n \delta_i \sqrt{a_i} = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ つへぐ

ExactSSR

Input: Positive integers $1 \le a_1, \ldots, a_n \le 2^n$ and signs $\delta_1, \ldots, \delta_n \in \{\pm 1\}$ **Output:** 1 iff $\sum_{i=1}^n \delta_i \sqrt{a_i} = 0$

• In **P** (polynomial time)

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … の々で

ExactSSR

Input: Positive integers $1 \le a_1, \ldots, a_n \le 2^n$ and signs $\delta_1, \ldots, \delta_n \in \{\pm 1\}$ **Output:** 1 iff $\sum_{i=1}^n \delta_i \sqrt{a_i} = 0$

• In **P** (polynomial time), in fact in **TC**⁰ (BHMOW'10).

ExactSSR

Input: Positive integers $1 \le a_1, \ldots, a_n \le 2^n$ and signs $\delta_1, \ldots, \delta_n \in \{\pm 1\}$ **Output:** 1 iff $\sum_{i=1}^n \delta_i \sqrt{a_i} = 0$

- In **P** (polynomial time), in fact in \mathbf{TC}^0 (BHMOW'10).
- For any (given) polynomial *f*, checking *f*(√*a*₁,...,√*a_n*) = 0 is in coNP unconditionally and in coRP assuming GRH (BNSW'22).

ExactSSR

Input: Positive integers $1 \le a_1, \ldots, a_n \le 2^n$ and signs $\delta_1, \ldots, \delta_n \in \{\pm 1\}$ **Output:** 1 iff $\sum_{i=1}^n \delta_i \sqrt{a_i} = 0$

- In **P** (polynomial time), in fact in \mathbf{TC}^0 (BHMOW'10).
- For any (given) polynomial *f*, checking *f*(√*a*₁,...,√*a_n*) = 0 is in coNP unconditionally and in coRP assuming GRH (BNSW'22).

Nikhil Balaji (IIT Delhi)

Sum of Square Roots Problem

WORReLL'23

◆□▶ ◆圖▶ ◆厘≯ ◆厘≯

E - つへで 7/7

• Better complexity upper bound for UnarySSR.

æ

イロト イロト イヨト イヨト

- Better complexity upper bound for UnarySSR.
- Corollary: UnarySSR cannot be NP-hard under widely believed complexity-theoretic assumptions.

æ

ヘロト 人間ト 人間ト 人間ト

- Better complexity upper bound for UnarySSR.
- Corollary: UnarySSR cannot be NP-hard under widely believed complexity-theoretic assumptions.
- Works for arbitrary but fixed set of real numbers, for eg. $\sum_{i=1}^{n} \delta_i(\pi e)^i$ where $\delta_i \in \{-d, \dots, d\}$

イロト 不得 トイヨト 不良 トーヨー

- Better complexity upper bound for UnarySSR.
- Corollary: UnarySSR cannot be NP-hard under widely believed complexity-theoretic assumptions.
- Works for arbitrary but fixed set of real numbers, for eg. $\sum_{i=1}^{n} \delta_i(\pi e)^i$ where $\delta_i \in \{-d, \dots, d\}$
- **Question:** Is there a short "witness" to test if a linear combination of square roots is positive?
- Applications to algorithmic questions in Diophantine approximation?

<ロト < (四) < ((1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1)

- Better complexity upper bound for UnarySSR.
- Corollary: UnarySSR cannot be NP-hard under widely believed complexity-theoretic assumptions.
- Works for arbitrary but fixed set of real numbers, for eg. $\sum_{i=1}^{n} \delta_i(\pi e)^i$ where $\delta_i \in \{-d, \dots, d\}$
- **Question:** Is there a short "witness" to test if a linear combination of square roots is positive?
- Applications to algorithmic questions in Diophantine approximation?

Happy Birthday Ben!

<ロト < 四ト < 三ト < 三ト - 三 -