George Kenison
George Kenison
Home
Publications
Posts
CV
Light
Dark
Automatic
1
Positivity Problems for Reversible Linear Recurrence Sequences
It is a longstanding open problem whether there is an algorithm to decide the Positivity Problem for linear recurrence sequences (LRS) …
G. Kenison
,
J. Nieuwveld
,
J. Ouaknine
,
J. Worrell
PDF
Cite
DOI
The Membership Problem for Hypergeometric Sequences with Quadratic Parameters
Hypergeometric sequences are rational-valued sequences that satisfy first-order linear recurrence relations with polynomial …
G. Kenison
,
K. Nosan
,
M. Shirmohammadi
,
J. Worrell
PDF
Cite
DOI
arXiv
From Polynomial Invariants to Linear Loops
Loop invariants are software properties that hold before and after every iteration of a loop. As such, invariants provide inductive …
G. Kenison
,
L. Kovács
,
A. Varonka
PDF
Cite
DOI
arXiv
Solving Invariant Generation for Unsolvable Loops
Automatically generating invariants, key to computer-aided analysis of probabilistic and deterministic programs and compiler …
D. Amrollahi
,
E. Bartocci
,
G. Kenison
,
L. Kovács
,
M. Moosbrugger
,
M. Stankovič
Cite
DOI
arXiv
On the Skolem Problem for Reversible Sequences
Given an integer linear recurrence sequence $\langle X_n \rangle$, the Skolem Problem asks to determine whether there is a natural …
G. Kenison
PDF
Cite
DOI
dagstuhl
On Positivity and Minimality for Second-Order Holonomic Sequences
An infinite sequence $\langle u_n \rangle$ of real numbers is holonomic if it satisfies a linear recurrence relation with polynomial …
G. Kenison
,
O. Klurman
,
E. Lefaucheux
,
F. Luca
,
P. Moree
,
J. Ouaknine
,
M. A. Whiteland
,
J. Worrell
PDF
Cite
DOI
dagstuhl
On the Skolem Problem and prime powers
The Skolem Problem asks, given a linear recurrence sequence $(u_n)$, whether there exists $n\in\mathbb{N}$ such that $u_n = 0$. In this …
G. Kenison
,
R. Lipton
,
J. Ouaknine
,
J. Worrell
PDF
Cite
DOI
arXiv
Cite
×