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Abstract
We consider the open Stochastic Reachability Problem: given a stochastic matrix K ∈ Qd×d,
probability distributions x, y ∈ Qd, and a non-negative constant r ∈ Q, determine whether there
exists an n ∈ N such that x>Kny = r. The restriction to random walks, the Markov Reachability
Problem, is the task of determining whether there exists an n ∈ N such that the probability of
travelling from a source state to a target state in n steps is equal to r. We establish decidability
results for: walks on undirected graphs, hyperplane walks, Bernoulli walks on cycles, and circulant
walks on certain finite groups. We illustrate this note with examples from self-organising lists and
card shuffling.
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Motivation

A dealer opens an unshuffled deck of cards and performs successive riffle shuffles on the deck.
This shuffling process will continue until you call out ‘Stop!’ You want the dealer to stop at
a given shuffle in order to be dealt a good hand. Can you decide when to make the call?

1 Introduction

Consider the following decision problem. Fix a stochastic matrix K ∈ Qd×d, a pair of
probability distributions x, y ∈ Qd, and a non-negative rational number r. Determine
whether there exists an n ∈ N such that x>Kny is equal to r. The decidability of this
Stochastic Reachability Problem is currently open.

The Stochastic Reachability Problem is a stochastic initialisation of the Scalar Reachability
Problem: given a square matrix M ∈ Qd×d, d-dimensional vectors x, y ∈ Qd, and a scalar
value ρ ∈ Q, determine whether there is an n ∈ N such that x>Mny = ρ. The study of such
matrix orbit and subspace hitting problems for linear dynamical systems has a long history.
Seminal work by Harrison [21] introduced the Orbit Problem; given M ∈ Qd×d and vectors
x, y ∈ Qd, determine whether there exists an n ∈ N such that Mnx = y. In two papers,
Kannan and Lipton [25] showed that the Orbit Problem is decidable in polynomial time and
then introduced the following generalisation [26]. Given a matrixM ∈ Qd×d, a vector x ∈ Qd,
and a subspace V ⊆ Qd, the Generalised Orbit Problem asks whether there exists an n ∈ N
such that Mnx ∈ V . As noted in [25] the Generalised Orbit Problem is closely related to a
fundamental and longstanding open problem in number theory, the Skolem Problem [16, 20].
Given a square matrix M ∈ Qd×d and d-dimensional vectors x, y ∈ Qd, the Skolem Problem
asks whether there exists an n ∈ N such that Mnx ∈ y⊥ where y⊥ = {v ∈ Rd : v · y = 0}.

The Markov Reachability Problem [3, 1], is a variant of the Stochastic Reachability
Problem (K,x, y, r) where one restricts the probability distributions x, y ∈ Qd to point
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masses. Thus the problem instance (K,x, y, r) is a question about a random walk on the
Markov chain associated with K. A random walk1, is a sequence of states generated by
the following process: start at an initial state; and then at each time instance move to a
randomly selected neighbour of the current state. Briefly, the Markov Reachability Problem
(K,x, y, r) asks one to determine whether there exists an n ∈ N such that the probability of
travelling from a source state to a target state in n steps is equal to r. The decidability of
the Markov Reachability Problem is likewise open.

For the avoidance of doubt, the Markov Reachability Problem does not ask whether the
probability of transitioning from source to target in any number of steps is equal to r. This
latter problem is trivially decidable: such probabilities are computable in polynomial time.
The authors of [1] showed that the Skolem Problem reduces to the Markov Reachability
Problem—hinting at the hardness of the latter.

Let us make clear the connection between number theory and the Skolem Problem.
Observe that Mnx ∈ y⊥ if and only if y>Mnx = 0 where 〈y>Mnx〉n is a linear recurrence
sequence. That is to say, an equivalent formulation of the Skolem Problem asks whether the
set {n ∈ N : y>Mnx = 0} is non-empty. A sequence 〈un〉∞n=0 of real algebraic numbers is a
linear recurrence sequence (sometimes a C-finite sequence) if its terms satisfy a recurrence
relation

un = a1un−1 + a2un−2 + · · ·+ a`un−`

with fixed real algebraic constants a1, . . . , a` such that a` 6= 0. Such a recurrence is said
to have order ` and a sequence 〈un〉n satisfying the recurrence is wholly determined by its
initial values u0, . . . , u`−1.

I Remark 1. Herein our restriction to stochastic initialisations is not a narrowing specialisation
in the following sense. Given a linear recurrence sequence 〈un〉n, there is a stochastic matrix
K̃ and vectors x̃, ỹ such that for each n ∈ N one has un = 0 if and only if x̃>K̃nỹ = 0. The
details of this argument are presented in [36, §3.3]. Thus the Skolem Problem is equivalent to
the specialisation where one considers only linear recurrence sequences driven by the family
of stochastic matrices.

It seems appropriate to make a small digression in order to discuss the structure of the set
{n ∈ N : un = 0} when 〈un〉n is a linear recurrence sequence. Work by Skolem, Mahler, and
Lech established that the set {n ∈ N : un = 0} is the union of a finite (possibly empty) set
together with a finite (possibly zero) number of infinite arithmetic progressions. Briefly, the
history of this remarkable result is a sequence of generalisations: proved by Skolem [46] for
the field of rational numbers, the result was subsequently extended to the field of algebraic
numbers by Mahler [31, 32], and then further extended to any field of characteristic 0 by
Lech [30]. All known proofs of the Skolem–Mahler–Lech Theorem employ techniques from
p-adic analysis. On the one hand, Berstel and Mignotte gave an effective method to obtain
all of the arithmetic progressions in the statement of the theorem [5]. On the other hand,
there is no known constructive method to produce the finite sporadic set of zeroes and so
the decidability of the Skolem Problem is open.

There has been limited progress on the decidability of the Skolem Problem when one
considers linear recurrence sequences of low order. Research by Mignotte, Shorey, and
Tijdeman [35], and, independently, Vereshchagin [49], proved the following:

1 Traditionally, random walks are defined on reversible Markov chains (see the Preliminaries), but we
shall apply the term widely.



G. Kenison XX:3

I Proposition 2. Let 〈un〉n be a non-degenerate linear recurrence sequence. The Skolem
Problem for 〈un〉n is decidable if 〈un〉n has at most three simple characteristic roots that are
maximal in modulus.

As a consequence, the Skolem Problem is known to be decidable for linear recurrences of
order at most four. The aforementioned papers employ techniques from p-adic analysis and
algebraic number theory and, in addition, Baker’s theorem for linear forms in logarithms of
algebraic numbers. Unfortunately the route taken via Baker’s Theorem does not appear to
extend easily to recurrences of higher order.

The next statement follows easily from the decidability results we establish herein.

I Theorem 3. The Markov Reachability Problem is decidable for random walks on: undirected
graphs, hyperplane arrangements, Bernoulli walks on cycles, and circulant walks on a class
of finite groups.

We make the following standing assumptions throughout (we refer the reader to the
Preliminaries for the technical definitions). We shall assume that a graph is non-empty,
finite, connected, and simple. The weights of edges in a weighted graph are non-negative
and rational. Herein a Markov chain is irreducible.

The paper is structured as follows. In Section 2 we recall preliminary material. The
decidability of the Stochastic Reachability Problem is discussed: in Section 3 for undirected
graphs; in Section 4 for hyperplane arrangements; in Section 5 for Bernoulli cycle graphs;
and in Section 6 for circulant chains associated with both Abelian and ambivalent groups.
In the self-contained Appendix A we give a brief discussion of the Stochastic Reachability
Problem under standard assumptions (irreducibility and aperiodicity) from graph theory and
probability theory.

2 Preliminaries

2.1 Linear algebra
A non-negative matrix K ∈ Qd×d is stochastic if

∑
vK(u, v) = 1 for each u ∈ {1, 2, . . . , d}.

The spectrum of K lies in the unit disk and unity is always an element of the spectrum.
Many of the following concepts and definitions are familiar in the study of non-negative
matrices, but for our purpose we limit our discussion to the setting of stochastic matrices.

A stochastic matrix K ∈ Qd×d is irreducible if for each pair (u, v) there exists m ∈ N
such that Km(u, v) > 0. The period of a state v ∈ V is the greatest common divisor of
the elements in the set {m ∈ N : Km(v, v) > 0}. In fact, this set is non-empty and all the
periods of an irreducible matrix are equal, so it is natural to speak of the (finite) period of the
matrix. An irreducible matrix is aperiodic if it has period 1. Equivalently, K is irreducible
and aperiodic if there exists an n > 0 such that Kn(u, v) > 0 for all (u, v).

I Theorem 4 (Perron–Frobenius Theorem, [19]). Let K ∈ Qd×d be an irreducible stochastic
matrix with period h. First, each of the roots of unity e2πik/h with k ∈ {0, 1, . . . , h− 1} is a
simple eigenvalue of K and the remaining eigenvalues of K are strictly smaller in modulus.
Second, let x and y be the respective left- and right-eigenvectors of K associated with the
eigenvalue 1. Then the entries of x and y are all either positive or negative (up to scaling)
and, in addition, these are the only eigenvectors of K with this property. Finally, K is
similar to e2πi/hK and so the spectrum of K is invariant under the action of e2πi/h.

If, in addition, the stochastic matrix K is irreducible and aperiodic then one has the
following.
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I Corollary 5. Suppose that K ∈ Qd×d is an irreducible and aperiodic stochastic matrix.
First, unity is a simple eigenvalue of K that is strictly greater in modulus than all the other
eigenvalues of K. Second, there is a unique positive left-eigenvector π (up to scaling) such
that πK = π.

In Appendix A we give a brief discussion of the Stochastic Reachability Problem when
one assumes that K is irreducible and aperiodic.

2.2 Markov chains
Markov chains are fundamental models of randomness in probabilistic model checking [2]. A
(discrete-time) Markov chain C on a finite state space S is a sequence of random variables
〈Xn〉∞n=0 with each Xn ∈ S that obeys the Markov property as follows. For each n ∈ N and
sequence of states 〈sm〉m in S,

P(Xn+1 = sn+1 | Xn = sn, Xn−1 = sn−1, . . . , X0 = s0) = P(Xn+1 = sn+1 | Xn = sn).

Here P is a probability measure. Since the next transition depends solely on the current
state, such models are suitably said to be memoryless. We shall assume that the Markov
chain is homogeneous; that is, the probability of transitioning from state sn to state sn+1 is
independent of the time instance n. Thus the transition probabilities are encoded using a
(stochastic) transition matrix K whose rows and columns are indexed by the elements in S
with entries K(s, t) = P(Xn+1 = t | Xn = s) for each pair (s, t) ∈ S2.

In the sequel we shall always assume that the transition matrix K is irreducible. This
assumption is made without loss of generality as the questions of reachability can be
decomposed into instances of time spent in transitory states and bottom strongly connected
components (sometimes irreducible components or communication classes).

2.3 linear recurrence sequences
Whenever we refer to a sequence 〈un〉n as a linear recurrence sequence, we shall mean that
〈un〉n is a real linear recurrence sequence over Q. For further information on the theory of
recurrence sequences we refer the reader to [16].

Recall the Skolem–Mahler–Lech Theorem from earlier.

I Theorem 6 (Skolem–Mahler–Lech). For a linear recurrence sequence 〈un〉n, the set of
terms where the sequence vanishes, {n ∈ N : un = 0}, is given by the union of a finite set
together with a finite number of infinite arithmetic progressions.

It is useful to introduce the notion of degeneracy into our discussion of recurrence sequences.
A recurrence sequence is degenerate if the ratio λi/λj of any two distinct characteristic roots
of the sequence is a root of unity. Otherwise a linear recurrence sequence is non-degenerate.
Any linear recurrence sequence can be effectively decomposed into an interleaving of finitely
many non-degenerate sequences, some of which may be identically zero (see [5]). A non-
degenerate non-zero linear recurrence sequence has only finitely many zeros; however, as
mentioned earlier, there is no known method to compute this finite set.

The next result is considered folklore (see [20]).

I Proposition 7. Let 〈un〉n be a non-degenerate linear recurrence sequence. The Skolem
Problem for 〈un〉n is decidable if each of the characteristic roots of 〈un〉n is real.
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Let m(X) = Xd − ad−1X
d−1 − · · · − a1X − a0 be the characteristic polynomial of the

stochastic transition matrix K ∈ Qd×d. Thus 〈x>Kny〉n is a linear recurrence sequence that
satisfies the recurrence relation

un+d − ad−1un+d−1 − · · · − a1un+1 − a0un = 0

of order d. We shall also call m(X) the characteristic polynomial of the above recurrence
relation. The characteristic polynomial of the recurrence relation of least order satisfied
by a linear recurrence sequence is the minimal polynomial of said sequence. A constant
sequence with un = r ∈ Q for each n ∈ N satisfies the relation un+1 = un with characteristic
polynomial X − 1. It is easy to verify that the sequence 〈x>Kny − r〉n satisfies a linear
recurrence relation with characteristic polynomial given by lcm(m(X), X − 1) = m(X) [16,
§1.1] where equality follows because K is a stochastic matrix and so (X − 1) | m(X).

It is well known that the terms of a linear recurrence sequence can be written in a closed
form as an exponential polynomial [16, §1.1]. Thus x>Kny − r =

∑d
k=1 Ak(n)λnk where the

polynomial coefficients Ak(n) depend on the x, y ∈ Qd and the characteristic roots λk are
the roots of the characteristic polynomial m. In summary,

I Lemma 8. Let (K,x, y, r) be a tuple as above. Then the sequence 〈un〉n with terms given
by un = y>Knx− r is a linear recurrence sequence. Moreover, the characteristic polynomial
of K and the characteristic polynomial of 〈un〉n are one and the same.

2.4 reversible chains
A Markov chain C associated with the stochastic matrix K is reversible if there exists
a probability distribution π that satisfies the detailed balance equations π(u)K(u, v) =
π(v)K(v, u). We note that the condition for reversibility is strictly stronger than the
assumptions for the existence of a stationary distribution and it can be shown that the above
probability distribution π is the unique stationary distribution for the chain C [40].

Let `2(π) be the Hilbert space of π-weighted square-summable real-valued functions with
the usual inner product

〈f, g〉`2(π) =
∑
s∈S

f(s)g(s)π(s)

and norm ‖f‖2
`2(π) =

∑
s∈S |f(s)|2π(s). The matrix K : `2(π) → `2(π) is an operator so

that Kf(s) =
∑
s′∈S K(s, s′)f(s′) (in agreement with the standard matrix action). Then

it is well-known (see, for example, [43, §1.3]) that the chain with transition matrix K

and stationary distribution π is reversible if and only if K is self-adjoint on `2(π); that is,
〈Kf, g〉`2(π) = 〈f,Kg〉`2(π) for each pair f, g ∈ `2(π). Thus we have the following.

I Lemma 9. If C is reversible then all the eigenvalues of K are real and K is diagonalisable.

Kolmogorov gave a necessary and sufficient condition for a Markov chain to be reversible [28,
Theorem 1.7].

I Theorem 10 (Kolmogorov’s criterion). A Markov chain with stochastic matrix K is reversible
if and only if its transition probabilities satisfy

K(s0, s1) · · ·K(sn−2, sn−1)K(sn−1, s0) = K(s0, sn−1)K(sn−1, sn−2) · · ·K(s1, s0)

for any finite sequence of states s0, s1, . . . , sn−1 ∈ S.
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Reversibility is a property of a number of commonly encountered Markov chains. For
example, birth-and-death chains from probability theory are reversible. One important
example from statistical physics, the Ehrenfest model, modelling idealised gas molecules
moving between two connected chambers is a birth-and-death chain.

The communication graphs associated a Markov chain is the undirected graph with vertex
set given by the states in the chain and edge set E := {e(u, v) : K(u, v) > 0 and K(v, u) > 0}.
The communication graph of any birth-and-death chain is a tree. In fact, this condition is
sufficient for reversibility [45, Theorem 99].

I Theorem 11. Suppose that the Markov chain C has a stationary distribution π and the
communication graph of C is a tree. Then C is reversible with respect to π.

Let us consider one final example whose underlying communication graph is not a tree.

I Example 12. Consider the random walk associated with the set of permutations of a finite
list of items I1, I2, . . . , IN placed in a linear array. Initialise the process with the items in
some starting permutation. At each time instance n, an item Ij is selected at random and is
swapped with the preceding item in the list. That is, unless Ij is the first item in the list, in
which case nothing is changed.

The random walk in Example 12 is commonly called the (adjacent) transposition scheme
[34, 23]. Suppose that each selection is independent and identically distributed, then the
process is naturally modelled by a Markov chain. For clarity, we suppose that item Ij is
selected with probability wj > 0 at each time instance. It known that the Markov chain for
this model is reversible. The proof of reversibility is a simple application of Kolmogorov’s
criterion; a formal argument is given in [40, Example 4.3.7].

2.5 circulant matrices
We begin by recalling standard material from the rich study of circulant matrices. For further
exposition we direct the interested reader to the survey [29].

Fix d ≥ 2 and let Cd denote the Euclidean d-dimensional complex vector space. In
this section we will, at points, refer to elements of Cd as row vectors or column vectors
depending on the suitability. Let y = (y0, y1, . . . , yd−1) ∈ Cd. We define the shift operator
σ : Cd → Cd by σ(y0, . . . , yd−2, yd−1) = (yd−1, y0, . . . , yd−2). Given the row vector y ∈ Cd,
let circ(y) ∈ Cd×d be the matrix with row k ∈ {1, . . . , d} given by σk−1(y). The set of d× d
circulant matrices Circ(d) ∈ Cd×d form a commutative ring under matrix multiplication and,
in addition, this ring is isomorphic to the ring of d× d diagonal matrices.

Let ω = e2πi/d be a primitive dth root of unity. For ` ∈ {0, 1 . . . , d − 1}, let x` =
d−1/2(1, ω`, . . . , ω(d−1)`) ∈ Cd. We form the Vandermonde matrix Q ∈ Cd×d whose `th row
(and column) is given by (x`) so that

Q = 1√
d



1 1 · · · 1 1
1 ω · · · ωd−2 ωd−1

...
...

...
...

1 ωd−2 · · · ω(d−2)2
ω(d−2)(d−1)

1 ωd−1 · · · ω(d−1)(d−2) ω(d−1)2


.

It can be shown that the set of x` form an orthogonal basis, from which it follows that Q is
invertible. In addition, Q is both unitary and symmetric. As a consequence of the following
result, all elements of Circ(d) have the same basis of orthonomal eigenvectors.
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I Proposition 13. The matrices in Circ(d) are simultaneously diagonalised by the unitary
matrix Q. In more detail, if y = (y0, y1, . . . , yd−1) and V = circ (y) then Q−1V Q =
diag(λ0, λ1, . . . , λd−1) where λ` =

∑d−1
k=0 ω

k`yk.

2.6 representation theory
Let G be a finite group. A presentation of G assigns to each element of the group a matrix
such that the matrix assigned by the presentation to the product of two elements is given by
the product of their matrices. More specifically, a group presentation ρ : G→ GL(V ) is a
homomorphism where V is a finite-dimensional vector space over R or C of dimension dρ.
Without loss of generality we can always assume that ρ(s) is a unitary matrix so that ρ(s)†,
the conjugate transpose of ρ(s), is equal to ρ(s−1).

A presentation is irreducible if there are no proper invariant subsets of the action of ρ;
that is, ρ is an irreducible presentation if for each s ∈ G there is a subspace W of V such
that ρ(s)W ⊆W then W is necessarily either 0 or V .

Let f : G→ R then the Fourier transform of f at ρ is given by f̂(ρ) :=
∑
s∈G f(s)ρ(s).

We decompose the function f using the Fourier inversion theorem transform: we have

f(t) = 1
|G|

∑
ρ

dρ tr(ρ(t−1)f̂(ρj))

where the summation is taken over the set of irreducible representations for G.

I Example 14. The irreducible representations of Zp, the integers modulo p, are all one-
dimensional and each map is of the form ρj(s) = e2πijs/p for each j ∈ {0, 1, . . . , p− 1}. The
Fourier transformation is the well-known discrete Fourier transform. Thus for f : Zp → R we
have f(t) = 1

p

∑p−1
k=0 e−2πik/pf̂(k) where f̂(k) =

∑p−1
j=0 f(j)e2πijk/p.

3 Reachability for Undirected Graphs

A directed graph G = (V,E) is a non-empty finite tuple of vertices V and directed edges
E such that each edge e(u, v) is determined by an ordered pair with u, v ∈ V . We shall
assume throughout that G is simple; that is to say, there is at most one directed edge e(u, v)
associated with the ordered pair (u, v) ∈ V 2. Let G be a weighted undirected graph. Each
edge e(u, v) ∈ E(G ) is endowed with a positive weight w(u, v) = w(v, u) ∈ Q. We define the
random walk associated with G as the Markov chain with stochastic transition matrix K with
entries K(u, v) = w(u, v)/w(u) where w(u) :=

∑
v∈N(u) w(u, v) is a sum over the neighbours

(or adjacent vertices) of vertex u. It is easily seen that this construction produces a reversible
Markov chain with associated stationary distribution π(u) = w(u)/w where w :=

∑
v w(v) is

twice the total edge-weight sum of G .
Conversely, every irreducible and reversible Markov chain is associated with a random

walk on a weighted undirected graph. Let K be the stochastic transition matrix associated
with such a Markov chain. We define an undirected graph with vertex set equal to the set of
states in the chain and e(u, v) is an edge in the undirected graph if and only if K(u, v) > 0.
In this setup each edge e(u, v) is endowed with weight w(u, v) := π(u)K(u, v).

I Theorem 15. The Stochastic Reachability Problem with initialisation (K,x, y, r) is decid-
able if K ∈ Qd×d is the transition matrix of a Markov chain modelling a random walk on an
undirected graph.
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From the above observations, Theorem 15 follows as a corollary to the next result for
reversible Markov chains.

I Proposition 16. The Stochastic Reachability Problem with initialisation (K,x, y, r) is
decidable if K is associated with a reversible Markov chain.

Proof. Since the Markov chain associated with K is reversible, the eigenvalues of K are all
real and K is diagonalisable. Thus K = P−1DP where D is a diagonal matrix and P is a
change of basis matrix. Then x>Kny = r if and only if x>P−1DnPy − r = 0. By Lemma 8,
the question of whether x>P−1DnPy−r vanishes for some n ∈ N is an instance of the Skolem
Problem. Since K is reversible, the characteristic roots of the sequence 〈x>P−1DnPy − r〉n
are all real (Lemmas 8 and 9). From Proposition 7, we deduce that this instance of the
Skolem Problem is decidable. Hence the desired result. J

I Remark 17. Let us consider the threshold variant of the Stochastic Reachability Problem
when K is diagonalisable (a considerably weaker assumption by comparison to reversibility).
The problem of determining whether x>Kny − r ≥ 0 for all but finitely many n ∈ N is
an instance of the Ultimate Positivity Problem. Ouaknine and Worrell [38] established
decidability for simple linear recurrence sequences. A linear recurrence sequence is simple
if each of the roots of the associated characteristic polynomial has algebraic multiplicity 1.
Thus decidability is resolved in the case that K is diagonalisable since then roots of the
minimal polynomial of 〈x>Kny − r〉n are simple (Lemma 8).

4 Reachability for Hyperplane Arrangements

In the previous section, we employed the traditional interpretation of a random walk as
an execution of a reversible Markov chain. In the sequel we shall abuse terminology and
consider the execution of a finite Markov chain (not necessarily reversible) as a random walk
on a weighted directed graph. In this section we consider a family of Markov chains that are,
in general, not reversible: walks on hyperplane arrangements. The main result of this section
is the following.

I Theorem 18. The Stochastic Reachability Problem with initialisation (K,x, y, r) is decid-
able when K ∈ Qd×d is the transition matrix of a Markov chain modelling a random walk on
a hyperplane arrangement.

It is illuminating to consider prototypical examples from the literature on self-organising
lists before we move on to hyperplane arrangements. The following setup is commonly painted
in terms of books on a shelf or a stack of cards. Consider a finite list of items I1, I2, . . . , IN
placed in a linear array. At each time instance t ∈ N, one of the items is called and an
action is performed. If the called item is in position j, with j ∈ {1, . . . , N}, then perform a
permutation σj ∈ SN on the current array. If the specified permutations σ1, σ2, . . . , σN are
such that from a given starting array one can reach any other by successive application of
some or all of the σj (where repeat application is permissible) then the scheme 〈σ1, . . . , σN 〉
is called self-organising [23].

Self-organising lists lend themselves nicely to probabilistic modelling when the selection
process at each stage is random. In particular, when selection is a sequence of independent
and identically distributed random variables the natural model is a Markov chain.

Self-organising lists appear in heuristic approaches to access time and information retrieval
[34] and applications to such technologies as VLSI circuit simulations, data compression
[41, 4, 42, 33], and communications networks. We refer the interested reader to the extensive
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list of references given in [17]. Two prototypical schemes that reorganise a list so that,
figuratively speaking, frequently accessed items are moved nearer to the start of the list
include: Move-to-Front (Tsetlin’s library) and transposition.

We described the (adjacent) transposition scheme in Example 12. The fact that the
scheme is self-organising is easily apparent: any permutation is reachable from a given
initial permutation. Since the scheme is associated with a reversible Markov chain, for such
examples the Stochastic Reachability Problem is decidable (see Theorem 15).

Tsetlin introduced his model of a self-organising library, commonly Tsetlin’s library, in
his work on automata [48]. Tsetlin’s library consists of a single shelf of books. At each time
instance a book is selected and moved to the leftmost position on the shelf. If the selected
book currently occupies the leftmost position on the shelf then nothing is changed. It is easily
seen that there is a path in the Markov chain of length at most N connecting any pair of
permutations of the shelved books. Thus Tsetlin’s library is a self-organising scheme. In the
computer science literature this sorting procedure is often referred to as the Move-To-Front
scheme.

Hendricks modelled Tsetlin’s library as a Markov chain so that the selection of book I` at
time n occurs with probability w` > 0 and

∑
` w` = 1 [22, 23]. Hendricks went on to give an

explicit formulation of the stationary distribution of this Markov chain.
Independent research by Donnelly [15], Kapoor and Reingold [27], and Phatarfod [39]

established exact formulae for the eigenvalues of the chain. In fact, the eigenvalues are linear
in the transition probabilities and their multiplicities satisfy elegant combinatorial formulae.

I Theorem 19. The distinct eigenvalues of Tsetlin’s library are indexed by subsets D ⊆
{1, 2, . . . , N} and λD =

∑
`∈D w`. Further, the multiplicity of eigenvalue λD is given by the

number of derangements on N − |D| elements.

In general, Tsetlin’s library is not a reversible chain and so we cannot employ our previous
decidability results for the Stochastic Reachability Problem in this instance. Nevertheless,
since the eigenvalues of Tsetlin’s library are all real-valued we obtain the following:

I Proposition 20. The Stochastic Reachability Problem with initialisation (K,x, y, r) is
decidable when K ∈ Qd×d is the transition matrix of a Markov chain modelling an instance
of Tsetlin’s library with rational weights.

Proof. From Theorem 19, the eigenvalues of K are all real. Thus x>Kny = r for some
n ∈ N if and only if {n ∈ N : x>Kny − r = 0} is a non-empty set. As before, we see this an
instance of the Skolem Problem. From Proposition 7, we deduce that this instance of the
Skolem Problem is decidable. Hence the desired result. J

I Remark 21. Fill derives an exact and tractable formula for the probability of any permutation
after any number of moves in [17, Theorem 2.1]. Thus Proposition 20 is a natural corollary
of Fill’s result.

A generalisation of Tsetlin’s library is the subset-move-to-front self-organising scheme
where, at each time instance, a subset of the N items is selected and the appropriate elements
are moved to the front of the list (whilst preserving their relative order).

A further generalisation permits permutations indexed by block-ordered partitions of N
elements. Label each item in the list with one of m ∈ N labels T1, . . . , Tm. The permutation
denoted by (T1, . . . , Tm) indicates the following action. First, move the items labelled T1 to
the front of the list whilst retaining their relative order. Second, move the items labelled T2
behind the T1 items, again, preserving their relative order. Continue this process until the
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items labelled by Tm are left at the end of the list. Such operations are called elementary
pop shuffles; more generally, a pop shuffle is given by any C-linear combination of elementary
pop shuffles (viewed as transformations on the appropriate vector space of permutations).
Bidigare, Hanlon, and Rockmore [6] prove analogous spectral results to Theorem 19 in this
wider setting. Further, those authors consider the pop shuffle model in the more abstract
setting of random walks on hyperplane arrangements.

A central real hyperplane arrangement A (hereafter a hyperplane arrangement) is a
collection of codimension-1 linear subspaces in Euclidean space Rd. Let L (A ) := {∩E :
E ⊆ A } be the intersection poset of A ; that is, the collection of subspaces of Rd given by
intersections of some of the hyperplanes of A equipped with a partial ordering by reverse
inclusion.

The faces of A are given by the intersections of open half-spaces and/or hyperplanes.
The chambers of A are the connected components in the complement of the union of the
hyperplanes. Hence each chamber of A is a d-dimensional face of A .

Given both a chamber C and a face F of A , Tits [47] asserts that there is a unique
chamber C ′ that has both F as a face and is closest to C in the metric that counts the
number of hyperplanes in A separating C and C ′. We call C ′ := FC the projection of C
onto F .

Given a hyperplane arrangement A as above, Bidigare, Hanlon, and Rockmore introduced
a family of Markov chains called hyperplane walks; the state space of each member is precisely
the set of chambers C (A ) of A . Let w be a probability measure on the set of faces F (A )
of A . At each time instance a face F ∈ F (A ) is selected at random (F is chosen with
probability w(F )). Then we update the state from the current chamber C to the new chamber
FC. The stochastic transition matrix K for this hyperplane walk has entries given by

K(C,C ′) :=
∑

F∈F(A ) :FC=C′

w(F )

where we have suppressed the dependence on w on the left-hand side.
The braid arrangements are a strict subclass of hyperplane arrangements. A braid

arrangement is a set of hyperplanes {Hi,j}i<j such that each Hi,j = {(x1, . . . , xN ) : xi = xj}.
The chambers of the braid arrangement are labelled by the N ! permutations of N elements.
Further, the faces of such an arrangement are labelled by block-ordered partitions. Bidigare,
Hanlon, and Rockmore showed that any Markov chain of a block-ordered permutation (and,
in particular, Tsetlin’s library) appears as a hyperplane walk on a braid arrangement.

The next theorem [6, Theorem 4.1] generalises the result in Theorem 19.

I Theorem 22. Given a hyperplane arrangement A and a probability distribution w on
F (A ), the associated hyperplane walk has the following properties. The eigenvalues of the
chain are indexed by the intersection poset L (A ) such that the eigenvalue λW associated
with W ∈ L (A ) is given by

λW =
∑

F∈F(A ) :F⊆W

w(F ).

The multiplicity of eigenvalue λW is equal to the magnitude of the Möbius function on L (A )
evaluated at W .

The proof of Theorem 18 is a straightforward corollary of Theorem 22.

Proof of Theorem 18. Consider that x>Kny = r for some n ∈ N if and only if {n ∈ N :
x>Kny − r = 0} is a non-empty set. As before, we see this an instance of the Skolem
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Problem. By Theorem 22, the eigenvalues of K are all real and so we deduce this instance of
the Skolem Problem is decidable (Proposition 7). Hence the desired result. J

I Remark 23. The insights in Bidigare, Hanlon and Rockmore’s seminal paper [6] led to
a veritable windfall of spectral results—analogous to Theorem 19—for random walks in
abstract settings. These abstract settings include:
1. Brown and Diaconis’ consideration of non-centred real hyperplane arrangements [10];
2. Brown’s [9] results for left regular bands—semigroups whose elements are all idempotent

(i.e., x2 = x) and, in addition, satisfy the cancellation property xyx = xy for all pairs
x, y—and subsequent extension to all bands; and

3. Björner’s eigenvalue formulae [8, 7] generalising Tsetlin’s library from a single bookshelf
to hierarchies of libraries.

Decidable instances of the Stochastic Reachability Problem are easily deduced from these
spectral results.

I Example 24. A riffle shuffle cuts a deck of cards into two parts L and R and then
interleaves the cards from said parts. The classical model for performing a single riffle shuffle
is as follows [13]. First, a deck of n cards is partitioned into two by cutting the deck at the
cth card with probability

(
n
c

)
2−n. One of the parts is selected at random and the bottom

card of this part is dropped. We repeat the process, dropping the bottom card from the
selected (remaining) part on top of the previous drop, until all cards have been dropped.
At a given interation, there are |L| and |R| cards in the (remaining) parts respectively. In
this iterate part L is selected with probability |L|/(|L|+ |R|) and part R is selected with
probability |R|/(|L|+ |R|).

Let f(σ) be the probability obtaining permutation σ from a single riffle shuffle. Let Kf

be the Markov chain associated with the random walk driven by f ; that is, the random walk
of successive riffle shuffles. The eigenvalues of this chain are 1, 2−1, . . . , 2−(n−1) such that
the multiplicity of 2−j is equal to the number of permutations in Sn with n− j cycles (an
excellent exposition is given in [14]).

It is interesting that the random walk driven by the riffle shuffle (and likewise the
generalisation that starts by partitioning a deck of cards into m parts) are related to the
family of hyperplane walks. Indeed, each riffle shuffle walk appears as a reversed hyperplane
walk on a braid arrangement [13].

5 Reachability for Bernoulli Cycles

In this section we consider a family of Markov chains where the Stochastic Reachability
Problem is decidable. This family of chains does not fall into either of the previous families
considered in this article.

Given a rational constant 0 ≤ p ≤ 1, we define the entries of a circulant stochastic matrix
K ∈ Qd×d with rows and columns indexed by {1, 2, . . . , d} as follows:

K(u, v) =


p if v = u+ 1 (mod d),
1− p if v = u− 1 (mod d),
0 otherwise.

Figuratively speaking, the associated random walk is determined by the sequence of flips of
a weighted coin. We call the Markov chain associated to K a Bernoulli cycle. In this section
we consider the Stochastic Reachability Problem (K,x, y, r) under the restriction that K is
a Bernoulli cycle.
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I Theorem 25. The Stochastic Reachability Problem with initialisation (K,x, y, r) is decid-
able when K ∈ Qd×d is a Bernoulli cycle.

Proof. There are two cases where we refer the reader to our previous discussions. First,
in the event that p ∈ {0, 1}, K is an irreducible permutation matrix. In this instance the
Stochastic Reachability Problem is trivially decidable. Second, if p = 1/2 then the Markov
chain is reversible; this claim is a trivial consequence of Kolmogorov’s criterion applied to a
symmetric matrix. Thus the Stochastic Reachability Problem is decidable in this instance by
Proposition 16.

It remains to consider p ∈ (0, 1/2) ∪ (1/2, 1). In fact, without loss of generality, we can
assume that p ∈ (1/2, 1) by using symmetry. So suppose that p ∈ (0, 1/2). Let us take a
short diversion and consider the function fp : [0, 2π)→ R given by fp(θ) := |e2iθp+ (1− p)|2.
It is easily shown that

fp(θ) = 1− 2p(1− p)(1− cos(2θ)).

Then the derivative of fp with respect to θ is given by f ′p(θ) = −2p(1− p) sin(2θ). Further
analysis shows that fp achieves its global maxima at θ = 0, π.

Let us return to the chain associated with K. By Proposition 13, the d eigenvalues of K
are given by

λj = pe2πij/d + (1− p)e−2πij/d = e−2πij/d(pe4πij/d + (1− p))

for j ∈ {1, . . . , d}. Observe that the modulus of eigenvalue λj of K is given by fp(e2πij/d).
In light of our analysis, there are two cases to consider. First, if d is even then K has two
simple eigenvalues −1 and 1 that are strictly greater in modulus than all other elements
of the spectrum. Second, if d = 2k + 1 is odd then K has a simple maximal eigenvalue 1,
1 > |λk| = |λk+1|, and all other eigenvalues are strictly smaller in modulus than λk and λk+1.

There exists n ∈ N such that x>Kny = r if and only if the linear recurrence sequence
〈x>Kmy − r〉m vanishes at index n. We can assume, without loss of generality, that
〈x>Kmy − r〉m is non-degenerate. Further, by Theorem 35 (Appendix A), all but the case
r = x>Πy are trivially decidable. (Here Π is the matrix whose rows are given by the
stationary distribution of K, see Appendix A.) Thus we need only consider the case that
r = x>Πy. From our spectral analysis of K and Lemma 8, the sequence 〈x>Kmy − r〉m
has one simple characteristic root of maximal modulus when d is even and two simple
characteristic roots of maximal modulus when d is odd. Thus we can apply Proposition 2,
to deduce that these instances of the Stochastic Reachability Problem are decidable. We
conclude that the Stochastic Reachability Problem is decidable for Bernoulli cycles. J

6 Reachability for G-circulant Chains

In this section we discuss decidable instances of the Stochastic Reachability Problem when
the related Markov chain is driven by a G-circulant matrix where G is a finite group. This
generalises our previous setting of walks on Bernoulli cycles (Zd-circulant chains). We begin
by recalling terminology from the Fourier analysis of finite groups.
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6.1 convolution
Let G be a finite group and {f(s)}s∈G a probability distribution on G so that

∑
s∈G f(s) = 1

and f is non-negative. Define the nth convolution of f recursively as follows:

f ∗ f(t) =
∑
s∈G

f(ts−1)f(s),

f∗n(t) = f∗(n−1) ∗ f(t) for n ∈ {2, 3, . . .}.

For a random walk that starts at the identity and selects vertices according to the distribution
f at each time instance, the quantity f ∗ f(t) represents the probability of the walk reaching
vertex t after two steps. Similarly, f∗n(t) is the probability of reaching vertex t after n steps.

Let Kf be the |G| × |G| stochastic matrix associated with the Markov chain model
of the random walk driven by f . Then Kf is a convolution matrix with entries given by
Kf (s, t) := f(ts−1). Herein we shall assume that supp(f) both generates G and is not
contained in a coset of a proper normal subgroup of G. Under these mild assumptions the
associated Markov chain is irreducible and aperiodic (see, for example, [44, Proposition 2.3]
and the references listed in [11, pg. 23]). Without loss of generality we shall assume that
every random walk starts at the identity eG. Thus Kn

f (eG, t) is the probability of landing on
vertex t after n steps.
I Remark 26. We call a probability distribution f : G → R symmetric if f(s) = f(s−1)
for each s ∈ G. If f is symmetric then the associated stochastic transition matrix Kf is
symmetric since Kf (s, t) = f(ts−1) = f(st−1) = Kf (t, s) for each pair s, t ∈ G. We note the
random walk driven by f is reversible in such cases. This claim follows as a trivial application
of Kolmogorov’s criterion. Thus by Proposition 16, the Stochastic Reachability Problem is
decidable in such instances.

6.2 G-circulant matrices
Several accounts in the literature pay special attention to convolution schemes where f is
a class function; that is to say, f is constant on conjugacy classes so that for each pair
s, t ∈ G one has f(sts−1) = f(t) [11, 12, 13]. A function that is both a class function and
a probability distribution is sometimes called a central probability [44]. We note that the
matrix Kf is left invariant; i.e., Kf (hs, ht) = Kf (s, t) if and only if f is a class function. We
follow Diaconis’ convention [12, §3.E.4] and call such matrices G-circulant.

When f is a class function, the transform f̂(ρ) associated with an irreducible representation
ρ is diagonal (see, for example, [12]). The next corollary follows from Schur’s lemma, see [12,
Corollary 1].

I Corollary 27. Let G be a finite group and Kf a G-circulant matrix associated with a class
function f : G→ R. Then Kf is unitarily diagonalisable so that Kf = Φ†DΦ where Φ is a
unitary matrix and D is a diagonal matrix. The eigenvalues of Kf are indexed by the set of
irreducible permutations of G so that

λj = 1
dρj

∑
t∈G

f(t)χj(t).

Here the eigenvalue λj has multiplicity d2
ρj and χj(t) := tr(ρj(t)) is the character associated

with ρj(t).

Let G be a finite group. The family of such G-circulant matrices is closed under sum,
product, transpose, conjugation, and inversion. In addition, all such matrices commute and
are simultaneously diagonalisable.
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I Example 28 (Random walks on Abelian groups). Consider Zp, the integers modulo p, as
p ∈ N distinct states placed on the circumference of a circle. The symmetric random walk
on Zp permits a state transition that is either one step clockwise or one step anti-clockwise
(both equally likely) at each time instance. This random walk is driven by the probability
distribution f as follows:

f(σ) =
{

1/2 if σ ∈ {1, p− 1},
0 otherwise.

Since Zp is an Abelian group, each of its conjugacy classes consists of a single element. Thus
f is a class function—in fact, by this same argument, any probability distribution on Zp is a
class function. Of course this argument holds for any Abelian group G: sts−1 = t holds for
all pairs s, t ∈ G. Thus any function from an Abelian group G into R is a class function.

One common application for random walks on groups is card shuffling: in such cases the
walk takes place on SN , the symmetric group on N elements, where N is the number of
cards in the deck. At each time instance the current permutation s ∈ SN is recorded and
the next state t is selected with probability f(ts−1).

Recall that the conjugacy classes of SN are precisely determined by cycle types. Since each
element σ ∈ SN can be uniquely expressed as a product of disjoint cycles (up to ordering),
two elements σ and τ in SN have the same cycle type if they have the same number of cycles
of equal length. It follows that the conjugacy classes are in a one-to-one correspondence with
the partitions of N elements. This is easily seen when one considers that if, when written as
a product of cycles, σ = (a11, . . . , a1k1)(a22, . . . , a2k2) · · · (a`1, . . . , a`k`) then

τστ−1 = (τ(a11), . . . , τ(a1k1))(τ(a22), . . . , τ(a2k2)) · · · (τ(a`1), . . . , τ(a`k`)).

I Example 29 (Random transposition [11]). Consider the following shuffling scheme on N
cards in a row. The cards are shuffled using random transpositions: a first card is randomly
selected, then a second card is randomly selected, and then the two cards are transposed.
Each selection is uniformly distributed. In the case that the first and second choice of cards
coincide then no permutation occurs. The probability of performing permutation σ is given
by

f(σ) =


1/N if σ = eG,

2/N2 if σ is a transposition,
0 otherwise.

The identity and the set of transpositions on SN are two conjugacy classes. Thus f is a class
function. As a corollary of Theorem 31 below, the Markov Reachability Problem is decidable
for the walk driven by random transposition.

I Remark 30. The conjugacy classes of SN are particularly well-behaved. In fact, for each
N ∈ N, SN is ambivalent. Here a group is ambivalent if for each x ∈ G, x and x−1 are
conjugate elements.

I Theorem 31. Let G be a finite ambivalent group. The Stochastic Reachability Problem
with initialisation (K,x, y, r) is decidable when K ∈ Q|G|×|G| is G-circulant.

We give two proofs of Theorem 31. The first proof, via character theory, follows from a
technical lemma (see Problem 2.11 in [24]).
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I Lemma 32. Let G be a finite ambivalent group. Suppose that χj is the character associated
with the irreducible representation ρj on G. Then χj is real-valued.

Proof. Let s ∈ G. Suppose that ρj is irreducible, then ρj(s) is similar to a diagonal
representation diag(ε1, . . . , εdj ) [24, Lemma 2.15] where each εk is an nth root of unity for
some n ∈ N. Suppose that χj is the character associated with ρj . Then, by definition,
χj(s) =

∑dj
k=1 εk and immediately we have χj(s−1) =

∑dj
k=1 ε

−1
k . Since |εk| = 1, we have

that εk = ε−1
k for each k. Thus χj(s−1) = χj(s).

We note that χj is a class function and, since G is an ambivalent group, we have that
χj(s) = χj(s−1) = χj(s) for each s ∈ G, from which the desired result follows. J

Proof of Theorem 31. Suppose that G is a finite ambivalent group and f : G → R is
a probability distribution on G. Recall the formula for the eigenvalues of K given in
Corollary 27: λj = 1

dρj

∑
t∈G f(t)χj(t). Here the eigenvalue λj has multiplicity d2

ρj . By
Lemma 32, χj is real-valued for each j. It follows that each of the eigenvalues of Kf is real.

The Stochastic Reachability Problem with initialisation (Kf , x, y, r) is equivalent to
determining whether the linear recurrence sequence 〈x>Kn

f y − r〉n vanishes at some index.
We note this is a decidable instance of the Skolem Problem as each of the characteristic roots
of this sequence are real (see Proposition 7 and Lemma 8). J

I Remark 33. An alternative proof of Theorem 31 uses the theory of reversible Markov
chains. We note that a central probability f on an ambivalent group G is symmetric. That
is to say, f(ts−1) = f(st−1) since every element and its inverse are conjugate. Thus the
associated stochastic transition matrix Kf is symmetric. We then apply the observation
in Remark 26: by Kolmogorov’s criterion, Kf determines a reversible Markov chain. The
decidability of Theorem 31 follows from Proposition 16.

Since the number of irreducible representations is equal to the number of conjugacy
classes of G, the irreducible representations of G are all one-dimensional maps if and only
if G is an Abelian group [11, Theorem 8 in §2.D]. When G is an Abelian group the family
of unitary maps on G commute and so the class of unitary maps on G are simultaneously
diagonalisable (generalising the property of Zd-circulant matrices).

It is interesting to consider the threshold variant of the Stochastic Reachability Problem
for G-circulant matrices when G is Abelian. Decidability of x>Kny ≥ r for all but finitely
many n ∈ N is equivalent to determining whether the terms in the linear recurrence sequence
〈x>Kny − r〉n are non-negative for all but finitely many n ∈ N. This is an instance of the
Ultimate Positivity Problem that we first met in Remark 17.

I Theorem 34. Suppose that G is a finite Abelian group. Fix a tuple (K,x, y, r) where K is
a G-circulant matrix. It is decidable whether x>Kny ≥ r for all but finitely many n ∈ N.

Proof. Let G be a finite Abelian group. Then each of the irreducible presentations of G is
a one-dimensional map and so for each j we have dj = 1. (Note that a G-circulant matrix
is diagonalisable if and only if G is Abelian.) By Corollary 27, K is diagonalisable. We
deduce that each of the roots of the minimal polynomial associated with 〈x>Kny − r〉n is
simple (Lemma 8). Decidability of the Ultimate Positivity Problem for such linear recurrence
sequences was established by Ouaknine and Worrell in [38] (Remark 17). Thus we have the
desired result. J
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A Reachability for Irreducible and Aperiodic Markov Chains

In this self-contained section we draw parallels between the Stochastic Reachability Problem
and the study of convergence properties of Markov chains in probability theory. In particular,
we narrow our focus to irreducible and aperiodic Markov chains.

A probability vector π such that πK = π is called a stationary distribution of the
matrix K. If K is both irreducible and aperiodic then there exists a unique stationary
distribution as stated in Corollary 5. Here irreducibility ensures the existence and uniqueness
of the stationary distribution. Aperiodicity of K is a sufficient condition for the stationary
distribution to be a steady state; that is to say, limn→∞Kn(u, v) = π(v) for each u [43].

I Theorem 35. The Stochastic Reachability Problem with initialisation (K,x, y, r) is decid-
able if K ∈ Qd×d is an irreducible and aperiodic matrix and r 6= x>Πy where Π is the matrix
whose rows are given by the stationary distribution of K.

Proof. As K is an aperiodic stochastic matrix it has a unique stationary distribution πK = π

with
∑
π(j) = 1. Further, the remaining eigenvalues of K have modulus at most 0 ≤ ε < 1.

Then x>Kny = x>Πy + O(εn). If r 6= x>Πy then one can determine in finite time whether
there exists n ∈ N such that x>Kny = r. J

Let us discuss the general case for strongly connected Markov chains—the chains whose
stochastic matrices are irreducible, but not necessarily aperiodic. For an irreducible stochastic
matrix K with period ρ ≥ 2 we note that, subject to the permutation of its rows and columns,
K can be written in block form as

K =



0 K1,d
K2,1 0

K3,2

. . . 0
Kd,d−1 0


in order that Kρ admits a diagonal square block decomposition where each diagonal block
is an aperiodic component. Then studying the matrix Kmρ reduces to a block-by-block
consideration of powers of an aperiodic subsystem. Thus, for sufficiently large m ∈ N, it
is clear that there is a single ` ∈ {0, 1, . . . , ρ− 1} such that Kmρ+`(1, 2) is non-zero. Thus
the Stochastic Reachability Problem reduces to asking whether there exists an m ∈ N such
that x>Kmρ+`y = x>Kmρ+`y = r. That is to say, the Stochastic Reachability Problem for
(K,w, y, r) with irreducible transition matrix K reduces to the Scalar Reachability Problem
with (M,w, y, r) where w> = x>K` andM = Kρ is block diagonal. The above decomposition
and reduction process is described in detail in [18, pp.341–342].
I Remark 36. 1. Under the assumptions of irreducibility and aperiodicity, for a given ini-

tialisation of the Stochastic Reachability Problem there is a single value, r = x>Πy, for
which decidability is at least as hard as the Skolem Problem. We should also note that,
under these assumptions, there are two initialisations where decidability is trivial. For
example, take x = π then for each n ∈ N we have x>Kn = π and so decidability of the
Stochastic Reachability Problem is trivial for the case (K,π, y, r). In a similar vein, if we
take y = 1

d1 to be the uniform distribution on the vertices of the chain then Kny = 1
d1

for each n ∈ N and so the decidability of the Stochastic Reachability Problem is trivial
for the case (K,x, 1

d1, r).
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2. It is motivating to consider the Stochastic Reachability Problem when y = π, the
stationary distribution of an irreducible chain. In the case that the chain is also aperiodic,
a fundamental result in probability theory is the (uniform) convergence from an initial
distribution to the stationary distribution [43]. In some sense the Stochastic Reachability
Problem is the analogous decision problem: given an initial distribution x, determine
whether a given correlation is achieved between the nth-step distribution x>Kn and π
for some n ∈ N.

3. One might naturally consider a threshold variant of this decision problem. For example,
given an initialisation (K,x, y, r), determine whether the inequality x>Kny ≥ r holds
for each n ∈ N (or for all but finitely many n ∈ N). These decision problems appear
frequently in the literature of linear recurrence sequences as the Positivity Problem and
the Ultimate Positivity Problem, respectively [38, 37]. In light of the previous observations
for irreducible and aperiodic chains, the hard cases to determine such thresholds occur
when r = x>Πy.
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