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second-order holonomic sequences

Definition
A second-order holonomic sequence 〈un〉n satisfies a polynomial

recurrence relation

p3(n)un = p2(n)un−1 + p1(n)un−2

for each n ∈ N. Here p1, p2, p3 ∈ Q[n] and p1(n), p3(n) 6= 0.

Examples

� Fibonacci’s sequence satisfies un = un−1 + un−2.

� Apéry’s sequence un =
∑n

k=0

(n
k

)2(n+k
k

)2
satisfies

n3un = (34n3 − 51n2 + 27n − 5)un−1 − (n − 1)3un−2.
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two decision problems

Definition
A non-trivial holonomic sequence 〈un〉n

� is minimal if, for every linearly independent solution 〈vn〉n to

the same recurrence, limn→∞ un/vn = 0;

� is positive if un ≥ 0 for each n.

Decision Problems

Given a holonomic sequence 〈un〉n, determine whether 〈un〉n is a

� minimal sequence (the Minimality Problem), or

� positive sequence (the Positivity Problem).
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minimal solutions: Fibonacci recurrence

Fibonacci recurrence
The solutions 〈un〉∞n=−1 of the Fibonacci recurrence satisfy

un = un−1 + un−2.
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Fibonacci recurrence
The solutions 〈un〉∞n=−1 of the Fibonacci recurrence satisfy

un = aφn + b(−φ−1)n.

Here φ = (1 +
√

5)/2 is the golden ratio. The constants a and b

are determined by the initial conditions.

〈un〉n is minimal precisely when

a = 0
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minimal solutions: Fibonacci recurrence

Fibonacci recurrence
The solutions 〈un〉∞n=−1 of the Fibonacci recurrence satisfy

un = aφn + b(−φ−1)n.

Here φ = (1 +
√

5)/2 is the golden ratio. The constants a and b

are determined by the initial conditions.

〈un〉n is minimal precisely when

u0/u−1 = −φ−1.

4



minimal solutions: Apéry recurrence

Apéry recurrence
The solutions 〈un〉∞n=0 of the Apéry recurrence satisfy

un =
34n3 − 51n2 + 27n − 5

n3
un−1 −

(n − 1)3

n3
un−2.
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minimal solutions: Apéry recurrence

Apéry recurrence
The solutions 〈un〉∞n=0 of the Apéry recurrence satisfy

un = aAn + bBn
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〈An〉∞n=0 = 〈1, 5, 73, 1445, . . .〉
〈Bn〉∞n=0 = 〈0, 6, 351/4, 62531/36, . . .〉.
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Apéry recurrence
The solutions 〈un〉∞n=0 of the Apéry recurrence satisfy
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〈An〉∞n=0 = 〈1, 5, 73, 1445, . . .〉
〈Bn〉∞n=0 = 〈0, 6, 351/4, 62531/36, . . .〉.

ζ(3) :=
∑∞

k=1 k
−3 is irrational as ζ(3)An − Bn → 0 quickly.
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minimal solutions: Apéry recurrence

Apéry recurrence
The solutions 〈un〉∞n=0 of the Apéry recurrence satisfy

un = aAn + bBn

where (canonical solution sequences)

〈An〉∞n=0 = 〈1, 5, 73, 1445, . . .〉
〈Bn〉∞n=0 = 〈0, 6, 351/4, 62531/36, . . .〉.

Since limn→∞ ζ(3)An − Bn = 0, 〈un〉n is minimal precisely when

u1/u0 = (5ζ(3)− 6)/ζ(3).
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main result

Theorem
Given a second-order polynomial recurrence relation,

There is a subinterval P ⊆ R such that a non-trivial solution

〈un〉∞n=−1 is positive if and only if u0/u−1 ∈ P.

We can decide positivity except when u0/u−1 coincides with an

endpoint of P.

For second-order holonomic sequences, the Positivity Problem

Turing-reduces to the Minimality Problem.
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approximations for π/4

π

4
=

1

1 +
12

2 +
32

2 +
52

2 +. . .

(Here (2n − 1)!! := (2n − 1)(2n − 3) · · · 3 · 1.)
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approximations for π/4

π

4
=

1

1 +
∞

K
j=2

(2j − 3)2

2

We employ Gauss’ Kettenbruch notation for brevity!

(Here (2n − 1)!! := (2n − 1)(2n − 3) · · · 3 · 1.)
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approximations for π/4

π

4
=

1

1 +
∞

K
j=2

(2j − 3)2

2

Recursively define 〈An〉n and 〈Bn〉n with

A0 = 0,A1 = 1,B0 = 1,B1 = 1, and for n ≥ 2

An = 2An−1 + (2n − 3)2An−2; and

Bn = 2Bn−1 + (2n − 3)2Bn−2.

(Here (2n − 1)!! := (2n − 1)(2n − 3) · · · 3 · 1.)

7



approximations for π/4

π

4
=

1

1 +
∞

K
j=2

(2j − 3)2

2

Recursively define 〈An〉n and 〈Bn〉n with
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An and Bn are (resp.) the numerator and denominator of the

nth approximant.

1

1 +
n

K
j=2

(2j − 3)2

2

=
An

Bn

=
n∑

k=1

(−1)k−1

2k − 1

and so in the limit as n→∞
1

1 +
∞

K
j=2

(2j − 3)2

2

= arctan(1) =
π

4
.
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normalisation

We normalise a second-order holonomic sequence 〈un〉n to obtain

〈wn〉n given by

wn = wn−1 + κnwn−2

where κn is a rational function.

For the purpose of this talk assume that κn < 0 and so

� 〈wn〉n is minimal if and only if 〈un〉n is minimal, and

� 〈wn〉n is positive if and only if 〈un〉n is positive.
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Pincherle’s Theorem

Theorem (Pincherle, 1894)
The recurrence wn = wn−1 + κnwn−2 admits a minimal solution if

and only if K
∞
n=1(κn/1) converges.

Further, if 〈wn〉∞n=−1 is a minimal solution then

−w0/w−1 = K
∞
n=1(κn/1).
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Worpitzky’s Theorem

Theorem (Generalised Worpitzky2)
K
∞
n=1(κn/1) converges if and only if, either

� 0 > limn→∞ κn > −1/4, or

� limn→∞ κn = −1/4 and eventually

κn ≥ −1/4− 1/(4n)2 − 1/(4n log n)2.

If one of the above holds then3

� 〈An/Bn〉n strictly decreases and converges to a finite value

� Bn > 0 for each n ∈ N.

2Jacobsen and Masson, 1990
3Lorentzen and Waadeland, 2008, §3.2.4 the Śleszyński–Pringsheim Theorem.
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when is 〈wn〉n positive?

Set w−1,w0 ≥ 0. For n ∈ N, wn ≥ 0 if and only if
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Set w−1,w0 ≥ 0. For n ∈ N, wn ≥ 0 if and only if

wn = w−1An + w0Bn ≥ 0

An/Bn ≥ −w0/w−1.
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when is 〈wn〉n positive?

Set w−1,w0 ≥ 0. For n ∈ N, wn ≥ 0 if and only if

wn = w−1An + w0Bn ≥ 0

An/Bn ≥ −w0/w−1.

Hence the non-trivial sequence 〈wn〉n is positive if and only if

−w0/w−1 ≤K
∞
n=1(κn/1).
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what remains?

Let 〈wn〉n be a solution of wn = wn−1 + κnwn−2.
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Task: detect when −w0/w−1 <K
∞
n=1(κn/1).

solution: study behaviour of 〈wn/wn−1〉n.
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Let 〈wn〉n be a solution of wn = wn−1 + κnwn−2.

Task: detect when −w0/w−1 <K
∞
n=1(κn/1).

solution: study behaviour of 〈wn/wn−1〉n.

� If 〈wn〉n is a non-trivial solution then, for each n

−wn/wn−1 ∈ R̂ := R ∪ {∞}.

� If 〈wn〉n is positive then −wn/wn−1 < 0 for each n.

�

−wn/wn−1 = −1 +
κn

−wn−1/wn−2
.
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what remains?

Let 〈wn〉n be a solution of wn = wn−1 + κnwn−2.

Task: For second-order holonomic sequences, the Positivity

Problem Turing-reduces to the Minimality Problem.
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polynomial continued fractions

For 〈wn〉n a solution to wn = wn−1 + κnwn−2,

−w0/w−1
?
=
∞

K
n=1

κn/1

φ = 1 +
∞

K
n=1

1/1

π

4
=

1

1 +
∞

K
n=1

(2n + 1)2

2

ζ(3) =
6

5 +
∞

K
n=1

−n6

34n3 + 51n2 + 27n + 5

14
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the class of periods

Definition (Kontsevich and Zagier, 2001)
A period is a complex number whose real and imaginary parts are

values of absolutely convergent integrals of algebraic functions

with algebraic coefficients over domains in Rk given by polynomial

inequalities with algebraic coefficients∫
D
g(x1, . . . , xk) dx1 · · · dxk .

Q, π =

∫ ∞
0

2

x2 + 1
dx , B(α, β) =

∫ 1

0
xα(1− x)β dx .
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equality between periods

Conjecture (Kontsevich and Zagier, 2001)
It is decidable whether two periods are equal.

Theorem
For second-order degree-1 holonomic sequences, the Positivity and

Minimality Problems reduce to determining equality between

(generalisations of) periods.

Proof (Idea).
Study the convergence properties of the generating function whose

coefficient sequence is minimal.
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Thank you!
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intuition

Behaviour of 〈wn/wn−1〉n when 〈wn〉n is minimal.

Let wn = wn−1 + κwn−1. Figure shows invariant lines for 〈wn/wn−1〉n
with κ < −1/4.
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