On minimality and positivity for second-order holonomic sequences

George Kenison
Oleksiy Klurman
Engel Lefaucheux
Florian Luca
Pieter Moree
Joël Ouaknine
Markus Whiteland
James Worrell

Technical University of Vienna
University of Bristol
MPI Software Systems
University of the Witwatersrand
MPI Mathematics
MPI Software Systems
MPI Software Systems
University of Oxford

classes of recurrence sequences ${ }^{1}$

[^0]
second-order holonomic sequences

Definition

A second-order holonomic sequence $\left\langle u_{n}\right\rangle_{n}$ satisfies a polynomial recurrence relation

$$
p_{3}(n) u_{n}=p_{2}(n) u_{n-1}+p_{1}(n) u_{n-2}
$$

for each $n \in \mathbb{N}$. Here $p_{1}, p_{2}, p_{3} \in \mathbb{Q}[n]$ and $p_{1}(n), p_{3}(n) \neq 0$.
Examples

second-order holonomic sequences

Definition

A second-order holonomic sequence $\left\langle u_{n}\right\rangle_{n}$ satisfies a polynomial recurrence relation

$$
p_{3}(n) u_{n}=p_{2}(n) u_{n-1}+p_{1}(n) u_{n-2}
$$

for each $n \in \mathbb{N}$. Here $p_{1}, p_{2}, p_{3} \in \mathbb{Q}[n]$ and $p_{1}(n), p_{3}(n) \neq 0$.
Examples

- Fibonacci's sequence satisfies $u_{n}=u_{n-1}+u_{n-2}$.

second-order holonomic sequences

Definition
A second-order holonomic sequence $\left\langle u_{n}\right\rangle_{n}$ satisfies a polynomial recurrence relation

$$
p_{3}(n) u_{n}=p_{2}(n) u_{n-1}+p_{1}(n) u_{n-2}
$$

for each $n \in \mathbb{N}$. Here $p_{1}, p_{2}, p_{3} \in \mathbb{Q}[n]$ and $p_{1}(n), p_{3}(n) \neq 0$.
Examples

- Fibonacci's sequence satisfies $u_{n}=u_{n-1}+u_{n-2}$.
- Apéry's sequence $u_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}$ satisfies

$$
n^{3} u_{n}=\left(34 n^{3}-51 n^{2}+27 n-5\right) u_{n-1}-(n-1)^{3} u_{n-2}
$$

two decision problems

Definition

A non-trivial holonomic sequence $\left\langle u_{n}\right\rangle_{n}$

- is minimal if, for every linearly independent solution $\left\langle v_{n}\right\rangle_{n}$ to the same recurrence, $\lim _{n \rightarrow \infty} u_{n} / v_{n}=0$;
- is positive if $u_{n} \geq 0$ for each n.

Decision Problems

two decision problems

Definition

A non-trivial holonomic sequence $\left\langle u_{n}\right\rangle_{n}$

- is minimal if, for every linearly independent solution $\left\langle v_{n}\right\rangle_{n}$ to the same recurrence, $\lim _{n \rightarrow \infty} u_{n} / v_{n}=0$;
- is positive if $u_{n} \geq 0$ for each n.

Decision Problems

Given a holonomic sequence $\left\langle u_{n}\right\rangle_{n}$, determine whether $\left\langle u_{n}\right\rangle_{n}$ is a

two decision problems

Definition

A non-trivial holonomic sequence $\left\langle u_{n}\right\rangle_{n}$

- is minimal if, for every linearly independent solution $\left\langle v_{n}\right\rangle_{n}$ to the same recurrence, $\lim _{n \rightarrow \infty} u_{n} / v_{n}=0$;
- is positive if $u_{n} \geq 0$ for each n.

Decision Problems

Given a holonomic sequence $\left\langle u_{n}\right\rangle_{n}$, determine whether $\left\langle u_{n}\right\rangle_{n}$ is a

- minimal sequence (the Minimality Problem), or

two decision problems

Definition

A non-trivial holonomic sequence $\left\langle u_{n}\right\rangle_{n}$

- is minimal if, for every linearly independent solution $\left\langle v_{n}\right\rangle_{n}$ to the same recurrence, $\lim _{n \rightarrow \infty} u_{n} / v_{n}=0$;
- is positive if $u_{n} \geq 0$ for each n.

Decision Problems

Given a holonomic sequence $\left\langle u_{n}\right\rangle_{n}$, determine whether $\left\langle u_{n}\right\rangle_{n}$ is a

- minimal sequence (the Minimality Problem), or
- positive sequence (the Positivity Problem).

minimal solutions: Fibonacci recurrence

Fibonacci recurrence
The solutions $\left\langle u_{n}\right\rangle_{n=-1}^{\infty}$ of the Fibonacci recurrence satisfy

$$
u_{n}=u_{n-1}+u_{n-2}
$$

minimal solutions: Fibonacci recurrence

Fibonacci recurrence
The solutions $\left\langle u_{n}\right\rangle_{n=-1}^{\infty}$ of the Fibonacci recurrence satisfy

$$
u_{n}=a \phi^{n}+b\left(-\phi^{-1}\right)^{n} .
$$

minimal solutions: Fibonacci recurrence

Fibonacci recurrence
The solutions $\left\langle u_{n}\right\rangle_{n=-1}^{\infty}$ of the Fibonacci recurrence satisfy

$$
u_{n}=a \phi^{n}+b\left(-\phi^{-1}\right)^{n} .
$$

Here $\phi=(1+\sqrt{5}) / 2$ is the golden ratio. The constants a and b are determined by the initial conditions.

minimal solutions: Fibonacci recurrence

Fibonacci recurrence
The solutions $\left\langle u_{n}\right\rangle_{n=-1}^{\infty}$ of the Fibonacci recurrence satisfy

$$
u_{n}=a \phi^{n}+b\left(-\phi^{-1}\right)^{n} .
$$

Here $\phi=(1+\sqrt{5}) / 2$ is the golden ratio. The constants a and b are determined by the initial conditions.

When is $\left\langle u_{n}\right\rangle_{n}$ a minimal solution?

minimal solutions: Fibonacci recurrence

Fibonacci recurrence
The solutions $\left\langle u_{n}\right\rangle_{n=-1}^{\infty}$ of the Fibonacci recurrence satisfy

$$
u_{n}=a \phi^{n}+b\left(-\phi^{-1}\right)^{n} .
$$

Here $\phi=(1+\sqrt{5}) / 2$ is the golden ratio. The constants a and b are determined by the initial conditions.
$\left\langle u_{n}\right\rangle_{n}$ is minimal precisely when

$$
a=0
$$

minimal solutions: Fibonacci recurrence

Fibonacci recurrence
The solutions $\left\langle u_{n}\right\rangle_{n=-1}^{\infty}$ of the Fibonacci recurrence satisfy

$$
u_{n}=a \phi^{n}+b\left(-\phi^{-1}\right)^{n} .
$$

Here $\phi=(1+\sqrt{5}) / 2$ is the golden ratio. The constants a and b are determined by the initial conditions.
$\left\langle u_{n}\right\rangle_{n}$ is minimal precisely when

$$
u_{0} / u_{-1}=-\phi^{-1}
$$

minimal solutions: Apéry recurrence

Apéry recurrence
The solutions $\left\langle u_{n}\right\rangle_{n=0}^{\infty}$ of the Apéry recurrence satisfy

$$
u_{n}=\frac{34 n^{3}-51 n^{2}+27 n-5}{n^{3}} u_{n-1}-\frac{(n-1)^{3}}{n^{3}} u_{n-2}
$$

minimal solutions: Apéry recurrence

Apéry recurrence
The solutions $\left\langle u_{n}\right\rangle_{n=0}^{\infty}$ of the Apéry recurrence satisfy

$$
u_{n}=a A_{n}+b B_{n}
$$

minimal solutions: Apéry recurrence

Apéry recurrence
The solutions $\left\langle u_{n}\right\rangle_{n=0}^{\infty}$ of the Apéry recurrence satisfy

$$
u_{n}=a A_{n}+b B_{n}
$$

where (canonical solution sequences)

$$
\begin{aligned}
& \left\langle A_{n}\right\rangle_{n=0}^{\infty}=\langle 1,5,73,1445, \ldots\rangle \\
& \left\langle B_{n}\right\rangle_{n=0}^{\infty}=\langle 0,6,351 / 4,62531 / 36, \ldots\rangle .
\end{aligned}
$$

minimal solutions: Apéry recurrence

Apéry recurrence
The solutions $\left\langle u_{n}\right\rangle_{n=0}^{\infty}$ of the Apéry recurrence satisfy

$$
u_{n}=a A_{n}+b B_{n}
$$

where (canonical solution sequences)

$$
\begin{aligned}
\left\langle A_{n}\right\rangle_{n=0}^{\infty} & =\langle 1,5,73,1445, \ldots\rangle \\
\left\langle B_{n}\right\rangle_{n=0}^{\infty} & =\langle 0,6,351 / 4,62531 / 36, \ldots\rangle
\end{aligned}
$$

$\zeta(3):=\sum_{k=1}^{\infty} k^{-3}$ is irrational as $\zeta(3) A_{n}-B_{n} \rightarrow 0$ quickly.

minimal solutions: Apéry recurrence

Apéry recurrence
The solutions $\left\langle u_{n}\right\rangle_{n=0}^{\infty}$ of the Apéry recurrence satisfy

$$
u_{n}=a A_{n}+b B_{n}
$$

where (canonical solution sequences)

$$
\begin{aligned}
\left\langle A_{n}\right\rangle_{n=0}^{\infty} & =\langle 1,5,73,1445, \ldots\rangle \\
\left\langle B_{n}\right\rangle_{n=0}^{\infty} & =\langle 0,6,351 / 4,62531 / 36, \ldots\rangle
\end{aligned}
$$

When is $\left\langle u_{n}\right\rangle_{n}$ a minimal solution?

minimal solutions: Apéry recurrence

Apéry recurrence
The solutions $\left\langle u_{n}\right\rangle_{n=0}^{\infty}$ of the Apéry recurrence satisfy

$$
u_{n}=a A_{n}+b B_{n}
$$

where (canonical solution sequences)

$$
\begin{aligned}
\left\langle A_{n}\right\rangle_{n=0}^{\infty} & =\langle 1,5,73,1445, \ldots\rangle \\
\left\langle B_{n}\right\rangle_{n=0}^{\infty} & =\langle 0,6,351 / 4,62531 / 36, \ldots\rangle
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \zeta(3) A_{n}-B_{n}=0,\left\langle u_{n}\right\rangle_{n}$ is minimal precisely when

$$
u_{n}=c\left(\zeta(3) A_{n}-B_{n}\right),
$$

minimal solutions: Apéry recurrence

Apéry recurrence
The solutions $\left\langle u_{n}\right\rangle_{n=0}^{\infty}$ of the Apéry recurrence satisfy

$$
u_{n}=a A_{n}+b B_{n}
$$

where (canonical solution sequences)

$$
\begin{aligned}
& \left\langle A_{n}\right\rangle_{n=0}^{\infty}=\langle 1,5,73,1445, \ldots\rangle \\
& \left\langle B_{n}\right\rangle_{n=0}^{\infty}=\langle 0,6,351 / 4,62531 / 36, \ldots\rangle
\end{aligned}
$$

Since $\lim _{n \rightarrow \infty} \zeta(3) A_{n}-B_{n}=0,\left\langle u_{n}\right\rangle_{n}$ is minimal precisely when

$$
u_{1} / u_{0}=(5 \zeta(3)-6) / \zeta(3)
$$

main result

Theorem
Given a second-order polynomial recurrence relation,
There is a subinterval $P \subseteq \mathbb{R}$ such that a non-trivial solution $\left\langle u_{n}\right\rangle_{n=-1}^{\infty}$ is positive if and only if $u_{0} / u_{-1} \in P$.

We can decide positivity except when u_{0} / u_{-1} coincides with an endpoint of P.

For second-order holonomic sequences, the Positivity Problem
Turing-reduces to the Minimality Problem.
approximations for $\pi / 4$

$$
\frac{\pi}{4}=\frac{1}{1+\prod_{j=2}^{\infty} \frac{(2 j-3)^{2}}{2}}
$$

We employ Gauss' Kettenbruch notation for brevity!

$$
\frac{1}{1+{\underset{j}{j=2}}_{\infty}^{(2 j-3)^{2}}} \frac{2}{2}
$$

Recursively define $\left\langle A_{n}\right\rangle_{n}$ and $\left\langle B_{n}\right\rangle_{n}$ with $A_{0}=0, A_{1}=1, B_{0}=1, B_{1}=1$, and for $n \geq 2$

$$
\begin{aligned}
& A_{n}=2 A_{n-1}+(2 n-3)^{2} A_{n-2} ; \text { and } \\
& B_{n}=2 B_{n-1}+(2 n-3)^{2} B_{n-2} .
\end{aligned}
$$

$$
\frac{1}{1+\varliminf_{j=2}^{\infty} \frac{(2 j-3)^{2}}{2}}
$$

Recursively define $\left\langle A_{n}\right\rangle_{n}$ and $\left\langle B_{n}\right\rangle_{n}$ with $A_{0}=0, A_{1}=1, B_{0}=1, B_{1}=1$, and for $n \geq 2$

$$
\begin{aligned}
& A_{n}=(2 n-1) A_{n-1}+(-1)^{n-1}(2 n-3)!!; \text { and } \\
& B_{n}=(2 n-1)!!.
\end{aligned}
$$

(Here $(2 n-1)!!:=(2 n-1)(2 n-3) \cdots 3 \cdot 1$.

$$
\frac{1}{1+{\underset{j}{j=2}}_{\infty}^{(2 j-3)^{2}}} \frac{2}{2}
$$

Recursively define $\left\langle A_{n}\right\rangle_{n}$ and $\left\langle B_{n}\right\rangle_{n}$ with $A_{0}=0, A_{1}=1, B_{0}=1, B_{1}=1$, and for $n \geq 2$

$$
\begin{aligned}
& A_{n}=(2 n-1)!!\left(1-\frac{1}{3}+\cdots+\frac{(-1)^{n-1}}{2 n-1}\right) ; \text { and } \\
& B_{n}=(2 n-1)!!.
\end{aligned}
$$

(Here $(2 n-1)!!:=(2 n-1)(2 n-3) \cdots 3 \cdot 1$.)

$$
\frac{1}{1+{\underset{j}{j=2}}_{\infty}^{(2 j-3)^{2}}} \frac{2}{2}
$$

Recursively define $\left\langle A_{n}\right\rangle_{n}$ and $\left\langle B_{n}\right\rangle_{n}$ with $A_{0}=0, A_{1}=1, B_{0}=1, B_{1}=1$, and for $n \geq 2$

$$
\begin{aligned}
& A_{n}=(2 n-1)!!\sum_{k=1}^{n} \frac{(-1)^{k-1}}{2 k-1} ; \text { and } \\
& B_{n}=(2 n-1)!!.
\end{aligned}
$$

(Here $(2 n-1)!!:=(2 n-1)(2 n-3) \cdots 3 \cdot 1$.)
A_{n} and B_{n} are (resp.) the numerator and denominator of the nth approximant.

$$
\frac{1}{1+\mathbf{K}_{j=2}^{n} \frac{(2 j-3)^{2}}{2}}=\frac{A_{n}}{B_{n}}
$$

A_{n} and B_{n} are (resp.) the numerator and denominator of the nth approximant.

$$
\frac{1}{1+\mathbf{K}_{j=2}^{n} \frac{(2 j-3)^{2}}{2}}=\frac{A_{n}}{B_{n}}=\sum_{k=1}^{n} \frac{(-1)^{k-1}}{2 k-1}
$$

A_{n} and B_{n} are (resp.) the numerator and denominator of the nth approximant.

$$
\frac{1}{1+K_{j=2}^{n} \frac{(2 j-3)^{2}}{2}}=\frac{A_{n}}{B_{n}}=\sum_{k=1}^{n} \frac{(-1)^{k-1}}{2 k-1}
$$

and so in the limit as $n \rightarrow \infty$

$$
\frac{1}{\infty}=\arctan (1)=\frac{\pi}{4}
$$

normalisation

We normalise a second-order holonomic sequence $\left\langle u_{n}\right\rangle_{n}$ to obtain
$\left\langle w_{n}\right\rangle_{n}$ given by

normalisation

We normalise a second-order holonomic sequence $\left\langle u_{n}\right\rangle_{n}$ to obtain
$\left\langle w_{n}\right\rangle_{n}$ given by

$$
w_{n}=w_{n-1}+\kappa_{n} w_{n-2}
$$

where κ_{n} is a rational function.

normalisation

We normalise a second-order holonomic sequence $\left\langle u_{n}\right\rangle_{n}$ to obtain $\left\langle w_{n}\right\rangle_{n}$ given by

$$
w_{n}=w_{n-1}+\kappa_{n} w_{n-2}
$$

where κ_{n} is a rational function.
For the purpose of this talk assume that $\kappa_{n}<0$ and so

normalisation

We normalise a second-order holonomic sequence $\left\langle u_{n}\right\rangle_{n}$ to obtain $\left\langle w_{n}\right\rangle_{n}$ given by

$$
w_{n}=w_{n-1}+\kappa_{n} w_{n-2}
$$

where κ_{n} is a rational function.
For the purpose of this talk assume that $\kappa_{n}<0$ and so

- $\left\langle w_{n}\right\rangle_{n}$ is minimal if and only if $\left\langle u_{n}\right\rangle_{n}$ is minimal, and

normalisation

We normalise a second-order holonomic sequence $\left\langle u_{n}\right\rangle_{n}$ to obtain $\left\langle w_{n}\right\rangle_{n}$ given by

$$
w_{n}=w_{n-1}+\kappa_{n} w_{n-2}
$$

where κ_{n} is a rational function.
For the purpose of this talk assume that $\kappa_{n}<0$ and so

- $\left\langle w_{n}\right\rangle_{n}$ is minimal if and only if $\left\langle u_{n}\right\rangle_{n}$ is minimal, and
- $\left\langle w_{n}\right\rangle_{n}$ is positive if and only if $\left\langle u_{n}\right\rangle_{n}$ is positive.

Pincherle's Theorem

Theorem (Pincherle, 1894)
The recurrence $w_{n}=w_{n-1}+\kappa_{n} w_{n-2}$ admits a minimal solution if and only if $\mathrm{K}_{n=1}^{\infty}\left(\kappa_{n} / 1\right)$ converges.

Further, if $\left\langle w_{n}\right\rangle_{n=-1}^{\infty}$ is a minimal solution then
$-w_{0} / w_{-1}=\mathbf{K}_{n=1}^{\infty}\left(\kappa_{n} / 1\right)$.

Worpitzky's Theorem

Theorem (Generalised Worpitzky ${ }^{2}$)
$\mathrm{K}_{n=1}^{\infty}\left(\kappa_{n} / 1\right)$ converges if and only if, either

- $0>\lim _{n \rightarrow \infty} \kappa_{n}>-1 / 4$, or
- $\lim _{n \rightarrow \infty} \kappa_{n}=-1 / 4$ and eventually

$$
\kappa_{n} \geq-1 / 4-1 /(4 n)^{2}-1 /(4 n \log n)^{2} .
$$

[^1]
Worpitzky's Theorem

Theorem (Generalised Worpitzky ${ }^{2}$)
$\mathrm{K}_{n=1}^{\infty}\left(\kappa_{n} / 1\right)$ converges if and only if, either

- $0>\lim _{n \rightarrow \infty} \kappa_{n}>-1 / 4$, or
- $\lim _{n \rightarrow \infty} \kappa_{n}=-1 / 4$ and eventually

$$
\kappa_{n} \geq-1 / 4-1 /(4 n)^{2}-1 /(4 n \log n)^{2} .
$$

If one of the above holds then ${ }^{3}$

- $\left\langle A_{n} / B_{n}\right\rangle_{n}$ strictly decreases and converges to a finite value
- $B_{n}>0$ for each $n \in \mathbb{N}$.

[^2]
when is $\left\langle w_{n}\right\rangle_{n}$ positive?

Set $w_{-1}, w_{0} \geq 0$. For $n \in \mathbb{N}, w_{n} \geq 0$ if and only if

when is $\left\langle w_{n}\right\rangle_{n}$ positive?

Set $w_{-1}, w_{0} \geq 0$. For $n \in \mathbb{N}, w_{n} \geq 0$ if and only if

$$
\begin{aligned}
w_{n}=w_{-1} A_{n}+w_{0} B_{n} & \geq 0 \\
A_{n} / B_{n} & \geq-w_{0} / w_{-1} .
\end{aligned}
$$

when is $\left\langle w_{n}\right\rangle_{n}$ positive?

Set $w_{-1}, w_{0} \geq 0$. For $n \in \mathbb{N}, w_{n} \geq 0$ if and only if

$$
\begin{aligned}
w_{n}=w_{-1} A_{n}+w_{0} B_{n} & \geq 0 \\
A_{n} / B_{n} & \geq-w_{0} / w_{-1} .
\end{aligned}
$$

Hence the non-trivial sequence $\left\langle w_{n}\right\rangle_{n}$ is positive if and only if
$-w_{0} / w_{-1} \leq K_{n=1}^{\infty}\left(\kappa_{n} / 1\right)$.

what remains?

Let $\left\langle w_{n}\right\rangle_{n}$ be a solution of $w_{n}=w_{n-1}+\kappa_{n} w_{n-2}$.

what remains?

Let $\left\langle w_{n}\right\rangle_{n}$ be a solution of $w_{n}=w_{n-1}+\kappa_{n} w_{n-2}$.
Task: detect when $-w_{0} / w_{-1}<K_{n=1}^{\infty}\left(\kappa_{n} / 1\right)$. solution: study behaviour of $\left\langle w_{n} / w_{n-1}\right\rangle_{n}$.

what remains?

Let $\left\langle w_{n}\right\rangle_{n}$ be a solution of $w_{n}=w_{n-1}+\kappa_{n} w_{n-2}$.
Task: detect when $-w_{0} / w_{-1}<K_{n=1}^{\infty}\left(\kappa_{n} / 1\right)$. solution: study behaviour of $\left\langle w_{n} / w_{n-1}\right\rangle_{n}$.

- If $\left\langle w_{n}\right\rangle_{n}$ is a non-trivial solution then, for each n

$$
-w_{n} / w_{n-1} \in \hat{\mathbb{R}}:=\mathbb{R} \cup\{\infty\}
$$

- If $\left\langle w_{n}\right\rangle_{n}$ is positive then $-w_{n} / w_{n-1}<0$ for each n.

$$
-w_{n} / w_{n-1}=-1+\frac{\kappa_{n}}{-w_{n-1} / w_{n-2}}
$$

what remains?

Let $\left\langle w_{n}\right\rangle_{n}$ be a solution of $w_{n}=w_{n-1}+\kappa_{n} w_{n-2}$.
Task: For second-order holonomic sequences, the Positivity Problem Turing-reduces to the Minimality Problem.

what remains?

Let $\left\langle w_{n}\right\rangle_{n}$ be a solution of $w_{n}=w_{n-1}+\kappa_{n} w_{n-2}$.
Task: For second-order holonomic sequences, the Positivity
Problem Turing-reduces to Equality Testing
here decidability is an open problem:

what remains?

Let $\left\langle w_{n}\right\rangle_{n}$ be a solution of $w_{n}=w_{n-1}+\kappa_{n} w_{n-2}$.
Task: For second-order holonomic sequences, the Positivity Problem Turing-reduces to Equality Testing here decidability is an open problem:

$$
-w_{0} / w_{-1} \stackrel{?}{=} \varliminf_{n=1}^{\infty}\left(\kappa_{n} / 1\right)
$$

polynomial continued fractions

For $\left\langle w_{n}\right\rangle_{n}$ a solution to $w_{n}=w_{n-1}+\kappa_{n} w_{n-2}$,

$$
-w_{0} / w_{-1} \stackrel{?}{=} \bigvee_{n=1}^{\infty} \kappa_{n} / 1
$$

polynomial continued fractions

For $\left\langle u_{n}\right\rangle_{n}$ a holonomic sequence,

$$
-u_{0} / u_{-1} \stackrel{?}{=} \bigvee_{n=1}^{\infty} \frac{p(n)}{q(n)}
$$

polynomial continued fractions

For $\left\langle u_{n}\right\rangle_{n}$ a holonomic sequence,

$$
\begin{aligned}
-u_{0} / u_{-1} & \stackrel{?}{=} \mathbb{K}_{n=1}^{\infty} \frac{p(n)}{q(n)} \\
\phi & =1+\prod_{n=1}^{\infty} 1 / 1
\end{aligned}
$$

polynomial continued fractions

For $\left\langle u_{n}\right\rangle_{n}$ a holonomic sequence,

$$
\begin{aligned}
-u_{0} / u_{-1} & \stackrel{?}{=} \mathbb{K}_{n=1}^{\infty} \frac{p(n)}{q(n)} \\
\phi & =1+\prod_{n=1}^{\infty} 1 / 1 \\
\frac{\pi}{4} & =\frac{1}{1+\prod_{n=1}^{\infty} \frac{(2 n+1)^{2}}{2}}
\end{aligned}
$$

polynomial continued fractions

For $\left\langle u_{n}\right\rangle_{n}$ a holonomic sequence,

$$
\begin{aligned}
-u_{0} / u_{-1} & \stackrel{?}{=}{\underset{n}{n=1}}_{\infty}^{\infty} \frac{p(n)}{q(n)} \\
\phi & =1+\mathrm{K}_{n=1}^{\infty} 1 / 1 \\
\frac{\pi}{4} & =\frac{1}{1+\varliminf_{n=1}^{\infty} \frac{(2 n+1)^{2}}{2}} \\
\zeta(3) & =\frac{6}{5+\varliminf_{n=1}^{\infty} \frac{-n^{6}}{34 n^{3}+51 n^{2}+27^{n}+5}}
\end{aligned}
$$

the class of periods

Definition (Kontsevich and Zagier, 2001)
A period is a complex number whose real and imaginary parts are values of absolutely convergent integrals of algebraic functions with algebraic coefficients over domains in \mathbb{R}^{k} given by polynomial inequalities with algebraic coefficients

$$
\int_{D} g\left(x_{1}, \ldots, x_{k}\right) d x_{1} \cdots d x_{k}
$$

the class of periods

Definition (Kontsevich and Zagier, 2001)
A period is a complex number whose real and imaginary parts are values of absolutely convergent integrals of algebraic functions with algebraic coefficients over domains in \mathbb{R}^{k} given by polynomial inequalities with algebraic coefficients

$$
\int_{D} g\left(x_{1}, \ldots, x_{k}\right) d x_{1} \cdots d x_{k}
$$

$\overline{\mathbb{Q}}$,

the class of periods

Definition (Kontsevich and Zagier, 2001)
A period is a complex number whose real and imaginary parts are values of absolutely convergent integrals of algebraic functions with algebraic coefficients over domains in \mathbb{R}^{k} given by polynomial inequalities with algebraic coefficients

$$
\int_{D} g\left(x_{1}, \ldots, x_{k}\right) d x_{1} \cdots d x_{k}
$$

$$
\overline{\mathbb{Q}}, \quad \pi=\int_{0}^{\infty} \frac{2}{x^{2}+1} d x
$$

the class of periods

Definition (Kontsevich and Zagier, 2001)
A period is a complex number whose real and imaginary parts are values of absolutely convergent integrals of algebraic functions with algebraic coefficients over domains in \mathbb{R}^{k} given by polynomial inequalities with algebraic coefficients

$$
\int_{D} g\left(x_{1}, \ldots, x_{k}\right) d x_{1} \cdots d x_{k}
$$

$$
\overline{\mathbb{Q}}, \quad \pi=\int_{0}^{\infty} \frac{2}{x^{2}+1} d x, \quad B(\alpha, \beta)=\int_{0}^{1} x^{\alpha}(1-x)^{\beta} d x
$$

equality between periods

Conjecture (Kontsevich and Zagier, 2001) It is decidable whether two periods are equal.

equality between periods

Conjecture (Kontsevich and Zagier, 2001)
It is decidable whether two periods are equal.
Theorem
For second-order degree-1 holonomic sequences, the Positivity and
Minimality Problems reduce to determining equality between
(generalisations of) periods.

equality between periods

Conjecture (Kontsevich and Zagier, 2001)
It is decidable whether two periods are equal.
Theorem
For second-order degree-1 holonomic sequences, the Positivity and
Minimality Problems reduce to determining equality between
(generalisations of) periods.
Proof (Idea).
Study the convergence properties of the generating function whose coefficient sequence is minimal.

Thank you!

intuition

Behaviour of $\left\langle w_{n} / w_{n-1}\right\rangle_{n}$ when $\left\langle w_{n}\right\rangle_{n}$ is minimal.

Let $w_{n}=w_{n-1}+\kappa w_{n-1}$. Figure shows invariant lines for $\left\langle w_{n} / w_{n-1}\right\rangle_{n}$ with $\kappa<-1 / 4$.

intuition

Behaviour of $\left\langle w_{n} / w_{n-1}\right\rangle_{n}$ when $\left\langle w_{n}\right\rangle_{n}$ is minimal.

Let $w_{n}=w_{n-1}+\kappa w_{n-1}$. Figure shows invariant lines for $\left\langle w_{n} / w_{n-1}\right\rangle_{n}$ with $\kappa=-1 / 4$.

intuition

Behaviour of $\left\langle w_{n} / w_{n-1}\right\rangle_{n}$ when $\left\langle w_{n}\right\rangle_{n}$ is minimal.

Let $w_{n}=w_{n-1}+\kappa w_{n-1}$. Figure shows invariant lines for $\left\langle w_{n} / w_{n-1}\right\rangle_{n}$ with $\kappa>-1 / 4$.

references i

R. Lacobsen and D. R. Masson. "On the convergence of limit periodic continued fractions $K\left(a_{n} / 1\right)$, where $a_{n} \rightarrow-\frac{1}{4}$. III". In: Constr. Approx. 6.4 (1990), 363-374.

Manuel Kauers and Peter Paule. The concrete tetrahedron. Texts and Monographs in Symbolic Computation. Symbolic sums, recurrence equations, generating functions, asymptotic estimates. SpringerWienNewYork, Vienna, 2011, pp. x+203.

囦 Maxim Kontsevich and Don Zagier. "Periods". In: Mathematics unlimited-2001 and beyond. Springer, Berlin, 2001, 771-808.

references ii

Lisa Lorentzen and Haakon Waadeland. Continued fractions. Vol. 1. Second. Vol. 1. Atlantis Studies in Mathematics for Engineering and Science. Atlantis Press, Paris; World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008, pp. xii +308 .

軎 Salvatore Pincherle. "Delle Funzioni ipergeometriche, e di varie questioni ad esse attinenti". In: Giorn. Mat. Battaglini 32 (1894), 209-291.

[^0]: ${ }^{1}$ see Kauers and Paule, 2011

[^1]: ${ }^{2}$ Jacobsen and Masson, 1990
 ${ }^{3}$ Lorentzen and Waadeland, 2008, §3.2.4 the Śleszyński-Pringsheim Theorem.

[^2]: ${ }^{2}$ Jacobsen and Masson, 1990
 ${ }^{3}$ Lorentzen and Waadeland, 2008, §3.2.4 the Śleszyński-Pringsheim Theorem.

